HAEM5:Adult T-cell leukaemia/lymphoma: Difference between revisions
| [checked revision] | [checked revision] |
Bailey.Glen (talk | contribs) No edit summary |
Bailey.Glen (talk | contribs) No edit summary |
||
| Line 75: | Line 75: | ||
<blockquote class='blockedit'>{{Box-round|title=v4:Clinical Features|The content below was from the old template. Please incorporate above.}} | <blockquote class='blockedit'>{{Box-round|title=v4:Clinical Features|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
ATLL is classified into four clinical subtypes: Acute, Lymphoma, Chronic and Smoldering<ref name=":3">{{Cite journal|last=Shimoyama|first=M.|date=1991-11|title=Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the Lymphoma Study Group (1984-87)|url=https://pubmed.ncbi.nlm.nih.gov/1751370|journal=British Journal of Haematology|volume=79|issue=3|pages=428–437|doi=10.1111/j.1365-2141.1991.tb08051.x|issn=0007-1048|pmid=1751370}}</ref>. | ATLL is classified into four clinical subtypes: Acute, Lymphoma, Chronic and Smoldering<ref name=":3">{{Cite journal|last=Shimoyama|first=M.|date=1991-11|title=Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the Lymphoma Study Group (1984-87)|url=https://pubmed.ncbi.nlm.nih.gov/1751370|journal=British Journal of Haematology|volume=79|issue=3|pages=428–437|doi=10.1111/j.1365-2141.1991.tb08051.x|issn=0007-1048|pmid=1751370}}</ref>. | ||
| Line 87: | Line 87: | ||
<u>Smoldering</u>: This variant may also progress to the acute subtype upon long duration. This variant may present with skin or lung lesions. More than 5% circulating abnormal T-cell lymphocytes can be found in the absence of leukocytosis. No manifestation of hypercalcemia, hepatosplenomegaly or lymphadenopathy. | <u>Smoldering</u>: This variant may also progress to the acute subtype upon long duration. This variant may present with skin or lung lesions. More than 5% circulating abnormal T-cell lymphocytes can be found in the absence of leukocytosis. No manifestation of hypercalcemia, hepatosplenomegaly or lymphadenopathy. | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
==Sites of Involvement== | ==Sites of Involvement== | ||
| Line 149: | Line 152: | ||
<blockquote class='blockedit'>{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}} | <blockquote class='blockedit'>{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
Tandem duplications of 2q33.2 segments cause formation of CTLA4-CD28 and ICOS-CD28 fusion products that render prolonged co-stimulatory signals<ref name=":1">{{Cite journal|last=Kataoka|first=Keisuke|last2=Nagata|first2=Yasunobu|last3=Kitanaka|first3=Akira|last4=Shiraishi|first4=Yuichi|last5=Shimamura|first5=Teppei|last6=Yasunaga|first6=Jun-Ichirou|last7=Totoki|first7=Yasushi|last8=Chiba|first8=Kenichi|last9=Sato-Otsubo|first9=Aiko|date=2015-11|title=Integrated molecular analysis of adult T cell leukemia/lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/26437031|journal=Nature Genetics|volume=47|issue=11|pages=1304–1315|doi=10.1038/ng.3415|issn=1546-1718|pmid=26437031}}</ref>. | Tandem duplications of 2q33.2 segments cause formation of CTLA4-CD28 and ICOS-CD28 fusion products that render prolonged co-stimulatory signals<ref name=":1">{{Cite journal|last=Kataoka|first=Keisuke|last2=Nagata|first2=Yasunobu|last3=Kitanaka|first3=Akira|last4=Shiraishi|first4=Yuichi|last5=Shimamura|first5=Teppei|last6=Yasunaga|first6=Jun-Ichirou|last7=Totoki|first7=Yasushi|last8=Chiba|first8=Kenichi|last9=Sato-Otsubo|first9=Aiko|date=2015-11|title=Integrated molecular analysis of adult T cell leukemia/lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/26437031|journal=Nature Genetics|volume=47|issue=11|pages=1304–1315|doi=10.1038/ng.3415|issn=1546-1718|pmid=26437031}}</ref>. | ||
| Line 168: | Line 171: | ||
|} | |} | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
| Line 175: | Line 181: | ||
* Individual Region Genomic Gain/Loss/LOH | * Individual Region Genomic Gain/Loss/LOH | ||
* Characteristic Chromosomal Patterns | * Characteristic Chromosomal Patterns | ||
* Gene Mutations (SNV/INDEL)}} | * Gene Mutations (SNV/INDEL)}}</blockquote> | ||
ATLL diagnosis can be made based on seropositivity for HTLV-1 and histologically and/or cytologically proven peripheral T cell lymphoma (PTCL). Diagnosis can also be made by quantifying proviral DNA loads (PVLs) in peripheral blood mononuclear cells using real time PCR. PVL of an infected person can range from 0.01 to 50% or higher. Other diagnostic criteria includes appropriate patient demographic information, hypercalcemia, skin lesions and a leukemic phase. | ATLL diagnosis can be made based on seropositivity for HTLV-1 and histologically and/or cytologically proven peripheral T cell lymphoma (PTCL). Diagnosis can also be made by quantifying proviral DNA loads (PVLs) in peripheral blood mononuclear cells using real time PCR. PVL of an infected person can range from 0.01 to 50% or higher. Other diagnostic criteria includes appropriate patient demographic information, hypercalcemia, skin lesions and a leukemic phase. | ||
| Line 183: | Line 189: | ||
As ATLL is resistant to most chemotherapy, there is no standard chemotherapy regimen. High dose combination chemotherapy and bone marrow transplantation have been tried previously<ref>{{Cite journal|last=Hishizawa|first=Masakatsu|last2=Kanda|first2=Junya|last3=Utsunomiya|first3=Atae|last4=Taniguchi|first4=Shuichi|last5=Eto|first5=Tetsuya|last6=Moriuchi|first6=Yukiyoshi|last7=Tanosaki|first7=Ryuji|last8=Kawano|first8=Fumio|last9=Miyazaki|first9=Yasushi|date=2010-08-26|title=Transplantation of allogeneic hematopoietic stem cells for adult T-cell leukemia: a nationwide retrospective study|url=https://pubmed.ncbi.nlm.nih.gov/20479287|journal=Blood|volume=116|issue=8|pages=1369–1376|doi=10.1182/blood-2009-10-247510|issn=1528-0020|pmid=20479287}}</ref>. Monoclonal antibody-based therapies against IL-2R (anti-Tac), CCR4 (mogamulizumab) and CD52 (alemtuzumab) have also been attempted along with arsenic trioxide, interferon α and zidovudine<ref>{{Cite journal|last=Hermine|first=Olivier|last2=Ramos|first2=Juan Carlos|last3=Tobinai|first3=Kensei|date=02 2018|title=A Review of New Findings in Adult T-cell Leukemia-Lymphoma: A Focus on Current and Emerging Treatment Strategies|url=https://pubmed.ncbi.nlm.nih.gov/29411267|journal=Advances in Therapy|volume=35|issue=2|pages=135–152|doi=10.1007/s12325-018-0658-4|issn=1865-8652|pmc=5818559|pmid=29411267}}</ref>. | As ATLL is resistant to most chemotherapy, there is no standard chemotherapy regimen. High dose combination chemotherapy and bone marrow transplantation have been tried previously<ref>{{Cite journal|last=Hishizawa|first=Masakatsu|last2=Kanda|first2=Junya|last3=Utsunomiya|first3=Atae|last4=Taniguchi|first4=Shuichi|last5=Eto|first5=Tetsuya|last6=Moriuchi|first6=Yukiyoshi|last7=Tanosaki|first7=Ryuji|last8=Kawano|first8=Fumio|last9=Miyazaki|first9=Yasushi|date=2010-08-26|title=Transplantation of allogeneic hematopoietic stem cells for adult T-cell leukemia: a nationwide retrospective study|url=https://pubmed.ncbi.nlm.nih.gov/20479287|journal=Blood|volume=116|issue=8|pages=1369–1376|doi=10.1182/blood-2009-10-247510|issn=1528-0020|pmid=20479287}}</ref>. Monoclonal antibody-based therapies against IL-2R (anti-Tac), CCR4 (mogamulizumab) and CD52 (alemtuzumab) have also been attempted along with arsenic trioxide, interferon α and zidovudine<ref>{{Cite journal|last=Hermine|first=Olivier|last2=Ramos|first2=Juan Carlos|last3=Tobinai|first3=Kensei|date=02 2018|title=A Review of New Findings in Adult T-cell Leukemia-Lymphoma: A Focus on Current and Emerging Treatment Strategies|url=https://pubmed.ncbi.nlm.nih.gov/29411267|journal=Advances in Therapy|volume=35|issue=2|pages=135–152|doi=10.1007/s12325-018-0658-4|issn=1865-8652|pmc=5818559|pmid=29411267}}</ref>. | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
==Individual Region Genomic Gain / Loss / LOH== | ==Individual Region Genomic Gain / Loss / LOH== | ||
| Line 231: | Line 240: | ||
|} | |} | ||
<blockquote class='blockedit'>{{Box-round|title=v4:Genomic Gain/Loss/LOH|The content below was from the old template. Please incorporate above.}} | <blockquote class='blockedit'>{{Box-round|title=v4:Genomic Gain/Loss/LOH|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
ATLL with high number of chromosomal imbalances is associated with poor survival<ref>{{Cite journal|last=Itoyama|first=T.|last2=Chaganti|first2=R. S.|last3=Yamada|first3=Y.|last4=Tsukasaki|first4=K.|last5=Atogami|first5=S.|last6=Nakamura|first6=H.|last7=Tomonaga|first7=M.|last8=Ohshima|first8=K.|last9=Kikuchi|first9=M.|date=2001-06-01|title=Cytogenetic analysis and clinical significance in adult T-cell leukemia/lymphoma: a study of 50 cases from the human T-cell leukemia virus type-1 endemic area, Nagasaki|url=https://pubmed.ncbi.nlm.nih.gov/11369658|journal=Blood|volume=97|issue=11|pages=3612–3620|doi=10.1182/blood.v97.11.3612|issn=0006-4971|pmid=11369658}}</ref><ref>{{Cite journal|last=Tsukasaki|first=K.|last2=Krebs|first2=J.|last3=Nagai|first3=K.|last4=Tomonaga|first4=M.|last5=Koeffler|first5=H. P.|last6=Bartram|first6=C. R.|last7=Jauch|first7=A.|date=2001-06-15|title=Comparative genomic hybridization analysis in adult T-cell leukemia/lymphoma: correlation with clinical course|url=https://pubmed.ncbi.nlm.nih.gov/11389029|journal=Blood|volume=97|issue=12|pages=3875–3881|doi=10.1182/blood.v97.12.3875|issn=0006-4971|pmid=11389029}}</ref><ref>{{Cite journal|last=Oshiro|first=Aya|last2=Tagawa|first2=Hiroyuki|last3=Ohshima|first3=Koichi|last4=Karube|first4=Kennosuke|last5=Uike|first5=Naokuni|last6=Tashiro|first6=Yukie|last7=Utsunomiya|first7=Atae|last8=Masuda|first8=Masato|last9=Takasu|first9=Nobuyuki|date=2006-06-01|title=Identification of subtype-specific genomic alterations in aggressive adult T-cell leukemia/lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/16484591|journal=Blood|volume=107|issue=11|pages=4500–4507|doi=10.1182/blood-2005-09-3801|issn=0006-4971|pmid=16484591}}</ref><ref name=":2">{{Cite journal|last=Kataoka|first=Keisuke|last2=Iwanaga|first2=Masako|last3=Yasunaga|first3=Jun-Ichirou|last4=Nagata|first4=Yasunobu|last5=Kitanaka|first5=Akira|last6=Kameda|first6=Takuro|last7=Yoshimitsu|first7=Makoto|last8=Shiraishi|first8=Yuichi|last9=Sato-Otsubo|first9=Aiko|date=01 11, 2018|title=Prognostic relevance of integrated genetic profiling in adult T-cell leukemia/lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/29084771|journal=Blood|volume=131|issue=2|pages=215–225|doi=10.1182/blood-2017-01-761874|issn=1528-0020|pmc=5757690|pmid=29084771}}</ref>. | ATLL with high number of chromosomal imbalances is associated with poor survival<ref>{{Cite journal|last=Itoyama|first=T.|last2=Chaganti|first2=R. S.|last3=Yamada|first3=Y.|last4=Tsukasaki|first4=K.|last5=Atogami|first5=S.|last6=Nakamura|first6=H.|last7=Tomonaga|first7=M.|last8=Ohshima|first8=K.|last9=Kikuchi|first9=M.|date=2001-06-01|title=Cytogenetic analysis and clinical significance in adult T-cell leukemia/lymphoma: a study of 50 cases from the human T-cell leukemia virus type-1 endemic area, Nagasaki|url=https://pubmed.ncbi.nlm.nih.gov/11369658|journal=Blood|volume=97|issue=11|pages=3612–3620|doi=10.1182/blood.v97.11.3612|issn=0006-4971|pmid=11369658}}</ref><ref>{{Cite journal|last=Tsukasaki|first=K.|last2=Krebs|first2=J.|last3=Nagai|first3=K.|last4=Tomonaga|first4=M.|last5=Koeffler|first5=H. P.|last6=Bartram|first6=C. R.|last7=Jauch|first7=A.|date=2001-06-15|title=Comparative genomic hybridization analysis in adult T-cell leukemia/lymphoma: correlation with clinical course|url=https://pubmed.ncbi.nlm.nih.gov/11389029|journal=Blood|volume=97|issue=12|pages=3875–3881|doi=10.1182/blood.v97.12.3875|issn=0006-4971|pmid=11389029}}</ref><ref>{{Cite journal|last=Oshiro|first=Aya|last2=Tagawa|first2=Hiroyuki|last3=Ohshima|first3=Koichi|last4=Karube|first4=Kennosuke|last5=Uike|first5=Naokuni|last6=Tashiro|first6=Yukie|last7=Utsunomiya|first7=Atae|last8=Masuda|first8=Masato|last9=Takasu|first9=Nobuyuki|date=2006-06-01|title=Identification of subtype-specific genomic alterations in aggressive adult T-cell leukemia/lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/16484591|journal=Blood|volume=107|issue=11|pages=4500–4507|doi=10.1182/blood-2005-09-3801|issn=0006-4971|pmid=16484591}}</ref><ref name=":2">{{Cite journal|last=Kataoka|first=Keisuke|last2=Iwanaga|first2=Masako|last3=Yasunaga|first3=Jun-Ichirou|last4=Nagata|first4=Yasunobu|last5=Kitanaka|first5=Akira|last6=Kameda|first6=Takuro|last7=Yoshimitsu|first7=Makoto|last8=Shiraishi|first8=Yuichi|last9=Sato-Otsubo|first9=Aiko|date=01 11, 2018|title=Prognostic relevance of integrated genetic profiling in adult T-cell leukemia/lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/29084771|journal=Blood|volume=131|issue=2|pages=215–225|doi=10.1182/blood-2017-01-761874|issn=1528-0020|pmc=5757690|pmid=29084771}}</ref>. | ||
| Line 288: | Line 297: | ||
|} | |} | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
==Characteristic Chromosomal Patterns== | ==Characteristic Chromosomal Patterns== | ||
| Line 312: | Line 324: | ||
|} | |} | ||
<blockquote class='blockedit'>{{Box-round|title=v4:Characteristic Chromosomal Aberrations / Patterns|The content below was from the old template. Please incorporate above.}} | <blockquote class='blockedit'>{{Box-round|title=v4:Characteristic Chromosomal Aberrations / Patterns|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
Cytogenetic studies show that ATLL often has a complex abnormal karyotype without a single distinct abnormality. Observed recurrent abnormalities include trisomy for 3, 7 or 21 and monosomy for X as well as deletion of Y and abnormalities of chromosome 6 and 14. Chromosome 14 rearrangements involving TCRA and TCRD at 14q11 and TCL1 at 14q32 have been documented<ref>{{Cite journal|date=1987-11|title=Correlation of chromosome abnormalities with histologic and immunologic characteristics in non-Hodgkin's lymphoma and adult T cell leukemia-lymphoma. Fifth International Workshop on Chromosomes in Leukemia-Lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/2889485|journal=Blood|volume=70|issue=5|pages=1554–1564|issn=0006-4971|pmid=2889485}}</ref>. Frequent deletions in known fragile sites have been detected in over 500 patients<ref name=":1" />. | Cytogenetic studies show that ATLL often has a complex abnormal karyotype without a single distinct abnormality. Observed recurrent abnormalities include trisomy for 3, 7 or 21 and monosomy for X as well as deletion of Y and abnormalities of chromosome 6 and 14. Chromosome 14 rearrangements involving TCRA and TCRD at 14q11 and TCL1 at 14q32 have been documented<ref>{{Cite journal|date=1987-11|title=Correlation of chromosome abnormalities with histologic and immunologic characteristics in non-Hodgkin's lymphoma and adult T cell leukemia-lymphoma. Fifth International Workshop on Chromosomes in Leukemia-Lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/2889485|journal=Blood|volume=70|issue=5|pages=1554–1564|issn=0006-4971|pmid=2889485}}</ref>. Frequent deletions in known fragile sites have been detected in over 500 patients<ref name=":1" />. | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
==Gene Mutations (SNV / INDEL)== | ==Gene Mutations (SNV / INDEL)== | ||
| Line 351: | Line 366: | ||
<blockquote class='blockedit'>{{Box-round|title=v4:Gene Mutations (SNV/INDEL)|The content below was from the old template. Please incorporate above.}} | <blockquote class='blockedit'>{{Box-round|title=v4:Gene Mutations (SNV/INDEL)|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
Over 10% of ATLL cases harbor mostly gain of function mutations. ATLL harbors multiple recurrent mutations in genes involved in the TCR-NF-κB pathway, tumor suppressors, transcription factors involved in cell growth and proliferation, apoptosis, and immune surveillance<ref>{{Cite journal|last=Kogure|first=Yasunori|last2=Kataoka|first2=Keisuke|date=2017-09|title=Genetic alterations in adult T-cell leukemia/lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/28627735|journal=Cancer Science|volume=108|issue=9|pages=1719–1725|doi=10.1111/cas.13303|issn=1349-7006|pmc=5581529|pmid=28627735}}</ref><ref name=":2" /><ref>{{Cite journal|last=Kataoka|first=Keisuke|last2=Nagata|first2=Yasunobu|last3=Kitanaka|first3=Akira|last4=Shiraishi|first4=Yuichi|last5=Shimamura|first5=Teppei|last6=Yasunaga|first6=Jun-Ichirou|last7=Totoki|first7=Yasushi|last8=Chiba|first8=Kenichi|last9=Sato-Otsubo|first9=Aiko|date=2015-11|title=Integrated molecular analysis of adult T cell leukemia/lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/26437031|journal=Nature Genetics|volume=47|issue=11|pages=1304–1315|doi=10.1038/ng.3415|issn=1546-1718|pmid=26437031}}</ref>. | Over 10% of ATLL cases harbor mostly gain of function mutations. ATLL harbors multiple recurrent mutations in genes involved in the TCR-NF-κB pathway, tumor suppressors, transcription factors involved in cell growth and proliferation, apoptosis, and immune surveillance<ref>{{Cite journal|last=Kogure|first=Yasunori|last2=Kataoka|first2=Keisuke|date=2017-09|title=Genetic alterations in adult T-cell leukemia/lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/28627735|journal=Cancer Science|volume=108|issue=9|pages=1719–1725|doi=10.1111/cas.13303|issn=1349-7006|pmc=5581529|pmid=28627735}}</ref><ref name=":2" /><ref>{{Cite journal|last=Kataoka|first=Keisuke|last2=Nagata|first2=Yasunobu|last3=Kitanaka|first3=Akira|last4=Shiraishi|first4=Yuichi|last5=Shimamura|first5=Teppei|last6=Yasunaga|first6=Jun-Ichirou|last7=Totoki|first7=Yasushi|last8=Chiba|first8=Kenichi|last9=Sato-Otsubo|first9=Aiko|date=2015-11|title=Integrated molecular analysis of adult T cell leukemia/lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/26437031|journal=Nature Genetics|volume=47|issue=11|pages=1304–1315|doi=10.1038/ng.3415|issn=1546-1718|pmid=26437031}}</ref>. | ||
| Line 510: | Line 525: | ||
|} | |} | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
==Epigenomic Alterations== | ==Epigenomic Alterations== | ||
| Line 537: | Line 555: | ||
|} | |} | ||
<blockquote class='blockedit'>{{Box-round|title=v4:Genes and Main Pathways Involved|The content below was from the old template. Please incorporate above.}} | <blockquote class='blockedit'>{{Box-round|title=v4:Genes and Main Pathways Involved|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
The most important genes involved in the development and progress of ATLL are the Tax and HBZ contributed by the HTLV-1 virus and genes listed in gene mutations table (above) from the host. The main pathways involved are TCR-NF-κB signaling by gain of function and amplifications in PLCG1, VAV1 and FYN, CD28, PRKCB, CARD11, IRF4 and RHOA; and loss of function mutations or deletions in CBLB, TRAF, TNFAIP3 and CSNK1A1<ref name=":1" />. | The most important genes involved in the development and progress of ATLL are the Tax and HBZ contributed by the HTLV-1 virus and genes listed in gene mutations table (above) from the host. The main pathways involved are TCR-NF-κB signaling by gain of function and amplifications in PLCG1, VAV1 and FYN, CD28, PRKCB, CARD11, IRF4 and RHOA; and loss of function mutations or deletions in CBLB, TRAF, TNFAIP3 and CSNK1A1<ref name=":1" />. | ||
| Line 548: | Line 566: | ||
The epigenetic mechanism is also exploited to alter gene expression and promote ATLL progression as explained above. | The epigenetic mechanism is also exploited to alter gene expression and promote ATLL progression as explained above. | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
==Genetic Diagnostic Testing Methods== | ==Genetic Diagnostic Testing Methods== | ||