HAEM5:Adult T-cell leukaemia/lymphoma: Difference between revisions
| [checked revision] | [checked revision] |
Bailey.Glen (talk | contribs) No edit summary |
Bailey.Glen (talk | contribs) Removed old template contents |
||
| Line 1: | Line 1: | ||
{{DISPLAYTITLE:Adult T-cell leukaemia/lymphoma}} | {{DISPLAYTITLE:Adult T-cell leukaemia/lymphoma}} | ||
[[HAEM5:Table_of_Contents|Haematolymphoid Tumours (WHO Classification, 5th ed.)]] | [[HAEM5:Table_of_Contents|Haematolymphoid Tumours (WHO Classification, 5th ed.)]] | ||
{{Under Construction}} | {{Under Construction}} | ||
<blockquote class= | <blockquote class="blockedit">{{Box-round|title=Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification|This page was converted to the new template on 2023-12-07. The original page can be found at [[HAEM4:Adult T-cell Leukemia/Lymphoma]]. | ||
}}</blockquote> | }}</blockquote> | ||
| Line 37: | Line 38: | ||
|Subtype(s) | |Subtype(s) | ||
|Adult T-cell leukaemia/lymphoma | |Adult T-cell leukaemia/lymphoma | ||
|} | |} | ||
| Line 217: | Line 128: | ||
|} | |} | ||
<blockquote class= | <blockquote class="blockedit">{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
Tandem duplications of 2q33.2 segments cause formation of CTLA4-CD28 and ICOS-CD28 fusion products that render prolonged co-stimulatory signals<ref name=":1">{{Cite journal|last=Kataoka|first=Keisuke|last2=Nagata|first2=Yasunobu|last3=Kitanaka|first3=Akira|last4=Shiraishi|first4=Yuichi|last5=Shimamura|first5=Teppei|last6=Yasunaga|first6=Jun-Ichirou|last7=Totoki|first7=Yasushi|last8=Chiba|first8=Kenichi|last9=Sato-Otsubo|first9=Aiko|date=2015-11|title=Integrated molecular analysis of adult T cell leukemia/lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/26437031|journal=Nature Genetics|volume=47|issue=11|pages=1304–1315|doi=10.1038/ng.3415|issn=1546-1718|pmid=26437031}}</ref>. | Tandem duplications of 2q33.2 segments cause formation of CTLA4-CD28 and ICOS-CD28 fusion products that render prolonged co-stimulatory signals<ref name=":1">{{Cite journal|last=Kataoka|first=Keisuke|last2=Nagata|first2=Yasunobu|last3=Kitanaka|first3=Akira|last4=Shiraishi|first4=Yuichi|last5=Shimamura|first5=Teppei|last6=Yasunaga|first6=Jun-Ichirou|last7=Totoki|first7=Yasushi|last8=Chiba|first8=Kenichi|last9=Sato-Otsubo|first9=Aiko|date=2015-11|title=Integrated molecular analysis of adult T cell leukemia/lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/26437031|journal=Nature Genetics|volume=47|issue=11|pages=1304–1315|doi=10.1038/ng.3415|issn=1546-1718|pmid=26437031}}</ref>. | ||
| Line 242: | Line 153: | ||
<blockquote class= | <blockquote class="blockedit">{{Box-round|title=v4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).|Please incorporate this section into the relevant tables found in: | ||
* Chromosomal Rearrangements (Gene Fusions) | * Chromosomal Rearrangements (Gene Fusions) | ||
* Individual Region Genomic Gain/Loss/LOH | * Individual Region Genomic Gain/Loss/LOH | ||
| Line 250: | Line 161: | ||
ATLL diagnosis can be made based on seropositivity for HTLV-1 and histologically and/or cytologically proven peripheral T cell lymphoma (PTCL). Diagnosis can also be made by quantifying proviral DNA loads (PVLs) in peripheral blood mononuclear cells using real time PCR. PVL of an infected person can range from 0.01 to 50% or higher. Other diagnostic criteria includes appropriate patient demographic information, hypercalcemia, skin lesions and a leukemic phase. | ATLL diagnosis can be made based on seropositivity for HTLV-1 and histologically and/or cytologically proven peripheral T cell lymphoma (PTCL). Diagnosis can also be made by quantifying proviral DNA loads (PVLs) in peripheral blood mononuclear cells using real time PCR. PVL of an infected person can range from 0.01 to 50% or higher. Other diagnostic criteria includes appropriate patient demographic information, hypercalcemia, skin lesions and a leukemic phase. | ||
The prognosis of ATLL is largely dependent on the subtype. The acute and lymphomatous subtypes are aggressive, with a median survival of 6.2 months and 10.2 months, respectively. The less-aggressive chronic and smoldering subtypes have a median survival of approximately 4.5 years<ref name=":3" />. Prognostic factors include clinical variant, age, serum calcium and LDH levels as well as detection of opportunistic infections of parasitic or viral types and p16 gene deletion and p53 mutation. | The prognosis of ATLL is largely dependent on the subtype. The acute and lymphomatous subtypes are aggressive, with a median survival of 6.2 months and 10.2 months, respectively. The less-aggressive chronic and smoldering subtypes have a median survival of approximately 4.5 years<ref name=":3">{{Cite journal|last=Shimoyama|first=M.|date=1991-11|title=Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the Lymphoma Study Group (1984-87)|url=https://pubmed.ncbi.nlm.nih.gov/1751370|journal=British Journal of Haematology|volume=79|issue=3|pages=428–437|doi=10.1111/j.1365-2141.1991.tb08051.x|issn=0007-1048|pmid=1751370}}</ref>. Prognostic factors include clinical variant, age, serum calcium and LDH levels as well as detection of opportunistic infections of parasitic or viral types and p16 gene deletion and p53 mutation. | ||
As ATLL is resistant to most chemotherapy, there is no standard chemotherapy regimen. High dose combination chemotherapy and bone marrow transplantation have been tried previously<ref>{{Cite journal|last=Hishizawa|first=Masakatsu|last2=Kanda|first2=Junya|last3=Utsunomiya|first3=Atae|last4=Taniguchi|first4=Shuichi|last5=Eto|first5=Tetsuya|last6=Moriuchi|first6=Yukiyoshi|last7=Tanosaki|first7=Ryuji|last8=Kawano|first8=Fumio|last9=Miyazaki|first9=Yasushi|date=2010-08-26|title=Transplantation of allogeneic hematopoietic stem cells for adult T-cell leukemia: a nationwide retrospective study|url=https://pubmed.ncbi.nlm.nih.gov/20479287|journal=Blood|volume=116|issue=8|pages=1369–1376|doi=10.1182/blood-2009-10-247510|issn=1528-0020|pmid=20479287}}</ref>. Monoclonal antibody-based therapies against IL-2R (anti-Tac), CCR4 (mogamulizumab) and CD52 (alemtuzumab) have also been attempted along with arsenic trioxide, interferon α and zidovudine<ref>{{Cite journal|last=Hermine|first=Olivier|last2=Ramos|first2=Juan Carlos|last3=Tobinai|first3=Kensei|date=02 2018|title=A Review of New Findings in Adult T-cell Leukemia-Lymphoma: A Focus on Current and Emerging Treatment Strategies|url=https://pubmed.ncbi.nlm.nih.gov/29411267|journal=Advances in Therapy|volume=35|issue=2|pages=135–152|doi=10.1007/s12325-018-0658-4|issn=1865-8652|pmc=5818559|pmid=29411267}}</ref>. | As ATLL is resistant to most chemotherapy, there is no standard chemotherapy regimen. High dose combination chemotherapy and bone marrow transplantation have been tried previously<ref>{{Cite journal|last=Hishizawa|first=Masakatsu|last2=Kanda|first2=Junya|last3=Utsunomiya|first3=Atae|last4=Taniguchi|first4=Shuichi|last5=Eto|first5=Tetsuya|last6=Moriuchi|first6=Yukiyoshi|last7=Tanosaki|first7=Ryuji|last8=Kawano|first8=Fumio|last9=Miyazaki|first9=Yasushi|date=2010-08-26|title=Transplantation of allogeneic hematopoietic stem cells for adult T-cell leukemia: a nationwide retrospective study|url=https://pubmed.ncbi.nlm.nih.gov/20479287|journal=Blood|volume=116|issue=8|pages=1369–1376|doi=10.1182/blood-2009-10-247510|issn=1528-0020|pmid=20479287}}</ref>. Monoclonal antibody-based therapies against IL-2R (anti-Tac), CCR4 (mogamulizumab) and CD52 (alemtuzumab) have also been attempted along with arsenic trioxide, interferon α and zidovudine<ref>{{Cite journal|last=Hermine|first=Olivier|last2=Ramos|first2=Juan Carlos|last3=Tobinai|first3=Kensei|date=02 2018|title=A Review of New Findings in Adult T-cell Leukemia-Lymphoma: A Focus on Current and Emerging Treatment Strategies|url=https://pubmed.ncbi.nlm.nih.gov/29411267|journal=Advances in Therapy|volume=35|issue=2|pages=135–152|doi=10.1007/s12325-018-0658-4|issn=1865-8652|pmc=5818559|pmid=29411267}}</ref>. | ||
| Line 314: | Line 225: | ||
|} | |} | ||
<blockquote class= | <blockquote class="blockedit">{{Box-round|title=v4:Genomic Gain/Loss/LOH|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
ATLL with high number of chromosomal imbalances is associated with poor survival<ref>{{Cite journal|last=Itoyama|first=T.|last2=Chaganti|first2=R. S.|last3=Yamada|first3=Y.|last4=Tsukasaki|first4=K.|last5=Atogami|first5=S.|last6=Nakamura|first6=H.|last7=Tomonaga|first7=M.|last8=Ohshima|first8=K.|last9=Kikuchi|first9=M.|date=2001-06-01|title=Cytogenetic analysis and clinical significance in adult T-cell leukemia/lymphoma: a study of 50 cases from the human T-cell leukemia virus type-1 endemic area, Nagasaki|url=https://pubmed.ncbi.nlm.nih.gov/11369658|journal=Blood|volume=97|issue=11|pages=3612–3620|doi=10.1182/blood.v97.11.3612|issn=0006-4971|pmid=11369658}}</ref><ref>{{Cite journal|last=Tsukasaki|first=K.|last2=Krebs|first2=J.|last3=Nagai|first3=K.|last4=Tomonaga|first4=M.|last5=Koeffler|first5=H. P.|last6=Bartram|first6=C. R.|last7=Jauch|first7=A.|date=2001-06-15|title=Comparative genomic hybridization analysis in adult T-cell leukemia/lymphoma: correlation with clinical course|url=https://pubmed.ncbi.nlm.nih.gov/11389029|journal=Blood|volume=97|issue=12|pages=3875–3881|doi=10.1182/blood.v97.12.3875|issn=0006-4971|pmid=11389029}}</ref><ref>{{Cite journal|last=Oshiro|first=Aya|last2=Tagawa|first2=Hiroyuki|last3=Ohshima|first3=Koichi|last4=Karube|first4=Kennosuke|last5=Uike|first5=Naokuni|last6=Tashiro|first6=Yukie|last7=Utsunomiya|first7=Atae|last8=Masuda|first8=Masato|last9=Takasu|first9=Nobuyuki|date=2006-06-01|title=Identification of subtype-specific genomic alterations in aggressive adult T-cell leukemia/lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/16484591|journal=Blood|volume=107|issue=11|pages=4500–4507|doi=10.1182/blood-2005-09-3801|issn=0006-4971|pmid=16484591}}</ref><ref name=":2">{{Cite journal|last=Kataoka|first=Keisuke|last2=Iwanaga|first2=Masako|last3=Yasunaga|first3=Jun-Ichirou|last4=Nagata|first4=Yasunobu|last5=Kitanaka|first5=Akira|last6=Kameda|first6=Takuro|last7=Yoshimitsu|first7=Makoto|last8=Shiraishi|first8=Yuichi|last9=Sato-Otsubo|first9=Aiko|date=01 11, 2018|title=Prognostic relevance of integrated genetic profiling in adult T-cell leukemia/lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/29084771|journal=Blood|volume=131|issue=2|pages=215–225|doi=10.1182/blood-2017-01-761874|issn=1528-0020|pmc=5757690|pmid=29084771}}</ref>. | ATLL with high number of chromosomal imbalances is associated with poor survival<ref>{{Cite journal|last=Itoyama|first=T.|last2=Chaganti|first2=R. S.|last3=Yamada|first3=Y.|last4=Tsukasaki|first4=K.|last5=Atogami|first5=S.|last6=Nakamura|first6=H.|last7=Tomonaga|first7=M.|last8=Ohshima|first8=K.|last9=Kikuchi|first9=M.|date=2001-06-01|title=Cytogenetic analysis and clinical significance in adult T-cell leukemia/lymphoma: a study of 50 cases from the human T-cell leukemia virus type-1 endemic area, Nagasaki|url=https://pubmed.ncbi.nlm.nih.gov/11369658|journal=Blood|volume=97|issue=11|pages=3612–3620|doi=10.1182/blood.v97.11.3612|issn=0006-4971|pmid=11369658}}</ref><ref>{{Cite journal|last=Tsukasaki|first=K.|last2=Krebs|first2=J.|last3=Nagai|first3=K.|last4=Tomonaga|first4=M.|last5=Koeffler|first5=H. P.|last6=Bartram|first6=C. R.|last7=Jauch|first7=A.|date=2001-06-15|title=Comparative genomic hybridization analysis in adult T-cell leukemia/lymphoma: correlation with clinical course|url=https://pubmed.ncbi.nlm.nih.gov/11389029|journal=Blood|volume=97|issue=12|pages=3875–3881|doi=10.1182/blood.v97.12.3875|issn=0006-4971|pmid=11389029}}</ref><ref>{{Cite journal|last=Oshiro|first=Aya|last2=Tagawa|first2=Hiroyuki|last3=Ohshima|first3=Koichi|last4=Karube|first4=Kennosuke|last5=Uike|first5=Naokuni|last6=Tashiro|first6=Yukie|last7=Utsunomiya|first7=Atae|last8=Masuda|first8=Masato|last9=Takasu|first9=Nobuyuki|date=2006-06-01|title=Identification of subtype-specific genomic alterations in aggressive adult T-cell leukemia/lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/16484591|journal=Blood|volume=107|issue=11|pages=4500–4507|doi=10.1182/blood-2005-09-3801|issn=0006-4971|pmid=16484591}}</ref><ref name=":2">{{Cite journal|last=Kataoka|first=Keisuke|last2=Iwanaga|first2=Masako|last3=Yasunaga|first3=Jun-Ichirou|last4=Nagata|first4=Yasunobu|last5=Kitanaka|first5=Akira|last6=Kameda|first6=Takuro|last7=Yoshimitsu|first7=Makoto|last8=Shiraishi|first8=Yuichi|last9=Sato-Otsubo|first9=Aiko|date=01 11, 2018|title=Prognostic relevance of integrated genetic profiling in adult T-cell leukemia/lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/29084771|journal=Blood|volume=131|issue=2|pages=215–225|doi=10.1182/blood-2017-01-761874|issn=1528-0020|pmc=5757690|pmid=29084771}}</ref>. | ||
| Line 413: | Line 324: | ||
|} | |} | ||
<blockquote class= | <blockquote class="blockedit">{{Box-round|title=v4:Characteristic Chromosomal Aberrations / Patterns|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
Cytogenetic studies show that ATLL often has a complex abnormal karyotype without a single distinct abnormality. Observed recurrent abnormalities include trisomy for 3, 7 or 21 and monosomy for X as well as deletion of Y and abnormalities of chromosome 6 and 14. Chromosome 14 rearrangements involving TCRA and TCRD at 14q11 and TCL1 at 14q32 have been documented<ref>{{Cite journal|date=1987-11|title=Correlation of chromosome abnormalities with histologic and immunologic characteristics in non-Hodgkin's lymphoma and adult T cell leukemia-lymphoma. Fifth International Workshop on Chromosomes in Leukemia-Lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/2889485|journal=Blood|volume=70|issue=5|pages=1554–1564|issn=0006-4971|pmid=2889485}}</ref>. Frequent deletions in known fragile sites have been detected in over 500 patients<ref name=":1" />. | Cytogenetic studies show that ATLL often has a complex abnormal karyotype without a single distinct abnormality. Observed recurrent abnormalities include trisomy for 3, 7 or 21 and monosomy for X as well as deletion of Y and abnormalities of chromosome 6 and 14. Chromosome 14 rearrangements involving TCRA and TCRD at 14q11 and TCL1 at 14q32 have been documented<ref>{{Cite journal|date=1987-11|title=Correlation of chromosome abnormalities with histologic and immunologic characteristics in non-Hodgkin's lymphoma and adult T cell leukemia-lymphoma. Fifth International Workshop on Chromosomes in Leukemia-Lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/2889485|journal=Blood|volume=70|issue=5|pages=1554–1564|issn=0006-4971|pmid=2889485}}</ref>. Frequent deletions in known fragile sites have been detected in over 500 patients<ref name=":1" />. | ||
| Line 469: | Line 380: | ||
|}Note: A more extensive list of mutations can be found in [https://www.cbioportal.org/ <u>cBioportal</u>], [https://cancer.sanger.ac.uk/cosmic <u>COSMIC</u>], and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content. | |}Note: A more extensive list of mutations can be found in [https://www.cbioportal.org/ <u>cBioportal</u>], [https://cancer.sanger.ac.uk/cosmic <u>COSMIC</u>], and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content. | ||
<blockquote class= | <blockquote class="blockedit">{{Box-round|title=v4:Gene Mutations (SNV/INDEL)|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
Over 10% of ATLL cases harbor mostly gain of function mutations. ATLL harbors multiple recurrent mutations in genes involved in the TCR-NF-κB pathway, tumor suppressors, transcription factors involved in cell growth and proliferation, apoptosis, and immune surveillance<ref>{{Cite journal|last=Kogure|first=Yasunori|last2=Kataoka|first2=Keisuke|date=2017-09|title=Genetic alterations in adult T-cell leukemia/lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/28627735|journal=Cancer Science|volume=108|issue=9|pages=1719–1725|doi=10.1111/cas.13303|issn=1349-7006|pmc=5581529|pmid=28627735}}</ref><ref name=":2" /><ref>{{Cite journal|last=Kataoka|first=Keisuke|last2=Nagata|first2=Yasunobu|last3=Kitanaka|first3=Akira|last4=Shiraishi|first4=Yuichi|last5=Shimamura|first5=Teppei|last6=Yasunaga|first6=Jun-Ichirou|last7=Totoki|first7=Yasushi|last8=Chiba|first8=Kenichi|last9=Sato-Otsubo|first9=Aiko|date=2015-11|title=Integrated molecular analysis of adult T cell leukemia/lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/26437031|journal=Nature Genetics|volume=47|issue=11|pages=1304–1315|doi=10.1038/ng.3415|issn=1546-1718|pmid=26437031}}</ref>. | Over 10% of ATLL cases harbor mostly gain of function mutations. ATLL harbors multiple recurrent mutations in genes involved in the TCR-NF-κB pathway, tumor suppressors, transcription factors involved in cell growth and proliferation, apoptosis, and immune surveillance<ref>{{Cite journal|last=Kogure|first=Yasunori|last2=Kataoka|first2=Keisuke|date=2017-09|title=Genetic alterations in adult T-cell leukemia/lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/28627735|journal=Cancer Science|volume=108|issue=9|pages=1719–1725|doi=10.1111/cas.13303|issn=1349-7006|pmc=5581529|pmid=28627735}}</ref><ref name=":2" /><ref>{{Cite journal|last=Kataoka|first=Keisuke|last2=Nagata|first2=Yasunobu|last3=Kitanaka|first3=Akira|last4=Shiraishi|first4=Yuichi|last5=Shimamura|first5=Teppei|last6=Yasunaga|first6=Jun-Ichirou|last7=Totoki|first7=Yasushi|last8=Chiba|first8=Kenichi|last9=Sato-Otsubo|first9=Aiko|date=2015-11|title=Integrated molecular analysis of adult T cell leukemia/lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/26437031|journal=Nature Genetics|volume=47|issue=11|pages=1304–1315|doi=10.1038/ng.3415|issn=1546-1718|pmid=26437031}}</ref>. | ||
| Line 663: | Line 574: | ||
|} | |} | ||
<blockquote class= | <blockquote class="blockedit">{{Box-round|title=v4:Genes and Main Pathways Involved|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
The most important genes involved in the development and progress of ATLL are the Tax and HBZ contributed by the HTLV-1 virus and genes listed in gene mutations table (above) from the host. The main pathways involved are TCR-NF-κB signaling by gain of function and amplifications in PLCG1, VAV1 and FYN, CD28, PRKCB, CARD11, IRF4 and RHOA; and loss of function mutations or deletions in CBLB, TRAF, TNFAIP3 and CSNK1A1<ref name=":1" />. | The most important genes involved in the development and progress of ATLL are the Tax and HBZ contributed by the HTLV-1 virus and genes listed in gene mutations table (above) from the host. The main pathways involved are TCR-NF-κB signaling by gain of function and amplifications in PLCG1, VAV1 and FYN, CD28, PRKCB, CARD11, IRF4 and RHOA; and loss of function mutations or deletions in CBLB, TRAF, TNFAIP3 and CSNK1A1<ref name=":1" />. | ||
| Line 697: | Line 608: | ||
(use the "Cite" icon at the top of the page) <span style="color:#0070C0">(''Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted''</span><span style="color:#0070C0">''.''</span><span style="color:#0070C0">)</span> <references /> | (use the "Cite" icon at the top of the page) <span style="color:#0070C0">(''Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted''</span><span style="color:#0070C0">''.''</span><span style="color:#0070C0">)</span> <references /> | ||
<br /> | |||
==Notes== | ==Notes== | ||
| Line 706: | Line 617: | ||
<nowiki>*</nowiki>''Citation of this Page'': “Adult T-cell leukaemia/lymphoma”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:Adult_T-cell_leukaemia/lymphoma</nowiki>. | <nowiki>*</nowiki>''Citation of this Page'': “Adult T-cell leukaemia/lymphoma”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:Adult_T-cell_leukaemia/lymphoma</nowiki>. | ||
[[Category:HAEM5]][[Category:DISEASE]][[Category:Diseases A]] | [[Category:HAEM5]] | ||
[[Category:DISEASE]] | |||
[[Category:Diseases A]] | |||