HAEM5:Juvenile xanthogranuloma: Difference between revisions

From Compendium of Cancer Genome Aberrations
Jump to navigation Jump to search
[checked revision][pending revision]
No edit summary
No edit summary
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{DISPLAYTITLE:Juvenile xanthogranuloma}}
{{DISPLAYTITLE:Juvenile xanthogranuloma}}
[[HAEM5:Table_of_Contents|Haematolymphoid Tumours (WHO Classification, 5th ed.)]]
[[HAEM5:Table_of_Contents|Haematolymphoid Tumours (WHO Classification, 5th ed.)]]


{{Under Construction}}
{{Under Construction}}


<span style="color:#0070C0">(General Instructions – The main focus of these pages is the clinically significant genetic alterations in each disease type. Use [https://www.genenames.org/ <u>HUGO-approved gene names and symbols</u>] (italicized when appropriate), [https://varnomen.hgvs.org/ HGVS-based nomenclature for variants], as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column to a table, click within the table and select the > symbol that appears to be given options. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see </span><u>[[Author_Instructions]]</u><span style="color:#0070C0"> and [[Frequently Asked Questions (FAQs)|<u>FAQs</u>]] as well as contact your [[Leadership|<u>Associate Editor</u>]] or [mailto:CCGA@cancergenomics.org <u>Technical Support</u>])</span>
<span style="color:#0070C0">(General Instructions – The focus of these pages is the clinically significant genetic alterations in each disease type. This is based on up-to-date knowledge from multiple resources such as PubMed and the WHO classification books. The CCGA is meant to be a supplemental resource to the WHO classification books; the CCGA captures in a continually updated wiki-stye manner the current genetics/genomics knowledge of each disease, which evolves more rapidly than books can be revised and published. If the same disease is described in multiple WHO classification books, the genetics-related information for that disease will be consolidated into a single main page that has this template (other pages would only contain a link to this main page). Use [https://www.genenames.org/ <u>HUGO-approved gene names and symbols</u>] (italicized when appropriate), [https://varnomen.hgvs.org/ <u>HGVS-based nomenclature for variants</u>], as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column in a table, click nearby within the table and select the > symbol that appears. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see </span><u>[[Author_Instructions]]</u><span style="color:#0070C0"> and [[Frequently Asked Questions (FAQs)|<u>FAQs</u>]] as well as contact your [[Leadership|<u>Associate Editor</u>]] or [mailto:CCGA@cancergenomics.org <u>Technical Support</u>].)</span>


==Primary Author(s)*==
==Primary Author(s)*==


Put your text here<span style="color:#0070C0"> (''<span class="blue-text">EXAMPLE:</span>'' Jane Smith, PhD) </span>
Mayuri Shende, MBBS, DCP, FCPS, DNB, ASCP-SH CM
 
<span style="color:#0070C0">Scott Turner, PhD </span>


__TOC__
__TOC__
Line 34: Line 37:
|}
|}


==Definition / Description of Disease==
==WHO Essential and Desirable Genetic Diagnostic Criteria==
 
<span style="color:#0070C0">(''Instructions: The table will have the diagnostic criteria from the WHO book <u>autocompleted</u>; remove any <u>non</u>-genetics related criteria. If applicable, add text about other classification'' ''systems that define this entity and specify how the genetics-related criteria differ.'')</span>
Put your text here <span style="color:#0070C0">(''Instructions: Brief description of approximately one paragraph - include disease context relative to other WHO classification categories, diagnostic criteria if applicable, and differential diagnosis if applicable. Other classifications can be referenced for comparison.'') </span>
{| class="wikitable"
 
|+
==Synonyms / Terminology==
|WHO Essential Criteria (Genetics)*
 
|
Put your text here <span style="color:#0070C0">(''Instructions: Include currently used terms and major historical ones, adding “(historical)” after the latter.'') </span>
|-
 
|WHO Desirable Criteria (Genetics)*
==Epidemiology / Prevalence==
|
 
|-
Put your text here
|Other Classification
 
|
==Clinical Features==
|}
 
<nowiki>*</nowiki>Note: These are only the genetic/genomic criteria. Additional diagnostic criteria can be found in the [https://tumourclassification.iarc.who.int/home <u>WHO Classification of Tumours</u>].
Put your text here and fill in the table <span style="color:#0070C0">(''Instruction: Can include references in the table. Do not delete table.'') </span>
==Related Terminology==
<span style="color:#0070C0">(''Instructions: The table will have the related terminology from the WHO <u>autocompleted</u>.)''</span>
{| class="wikitable"
{| class="wikitable"
|'''Signs and Symptoms'''
|+
|<span class="blue-text">EXAMPLE:</span> Asymptomatic (incidental finding on complete blood counts)
|Acceptable
 
|
<span class="blue-text">EXAMPLE:</span> B-symptoms (weight loss, fever, night sweats)
 
<span class="blue-text">EXAMPLE:</span> Fatigue
 
<span class="blue-text">EXAMPLE:</span> Lymphadenopathy (uncommon)
|-
|-
|'''Laboratory Findings'''
|Not Recommended
|<span class="blue-text">EXAMPLE:</span> Cytopenias
|
 
<span class="blue-text">EXAMPLE:</span> Lymphocytosis (low level)
|}
|}


==Sites of Involvement==
==Gene Rearrangements==
 
Put your text here <span style="color:#0070C0">(''Instruction: Indicate physical sites; <span class="blue-text">EXAMPLE:</span> nodal, extranodal, bone marrow'') </span>
 
==Morphologic Features==
 
Put your text here
 
==Immunophenotype==


Put your text here and fill in the table <span style="color:#0070C0">(''Instruction: Can include references in the table. Do not delete table.'') </span>


Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span>
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
!Finding!!Marker
!Driver Gene!!Fusion(s) and Common Partner Genes!!Molecular Pathogenesis!!Typical Chromosomal Alteration(s)
!Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease)
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T
!Established Clinical Significance Per Guidelines - Yes or No (Source)
!Clinical Relevance Details/Other Notes
|-
|-
|Positive (universal)||<span class="blue-text">EXAMPLE:</span> CD1
|<span class="blue-text">EXAMPLE:</span> ''ABL1''||<span class="blue-text">EXAMPLE:</span> ''BCR::ABL1''||<span class="blue-text">EXAMPLE:</span> The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1.||<span class="blue-text">EXAMPLE:</span> t(9;22)(q34;q11.2)
|<span class="blue-text">EXAMPLE:</span> Common (CML)
|<span class="blue-text">EXAMPLE:</span> D, P, T
|<span class="blue-text">EXAMPLE:</span> Yes (WHO, NCCN)
|<span class="blue-text">EXAMPLE:</span>
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference).
|-
|-
|Positive (subset)||<span class="blue-text">EXAMPLE:</span> CD2
|<span class="blue-text">EXAMPLE:</span> ''CIC''
|<span class="blue-text">EXAMPLE:</span> ''CIC::DUX4''
|<span class="blue-text">EXAMPLE:</span> Typically, the last exon of ''CIC'' is fused to ''DUX4''. The fusion breakpoint in ''CIC'' is usually intra-exonic and removes an inhibitory sequence, upregulating ''PEA3'' genes downstream of ''CIC'' including ''ETV1'', ''ETV4'', and ''ETV5''.
|<span class="blue-text">EXAMPLE:</span> t(4;19)(q25;q13)
|<span class="blue-text">EXAMPLE:</span> Common (CIC-rearranged sarcoma)
|<span class="blue-text">EXAMPLE:</span> D
|
|<span class="blue-text">EXAMPLE:</span>
 
''DUX4'' has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references).
|-
|-
|Negative (universal)||<span class="blue-text">EXAMPLE:</span> CD3
|<span class="blue-text">EXAMPLE:</span> ''ALK''
|-
|<span class="blue-text">EXAMPLE:</span> ''ELM4::ALK''
|Negative (subset)||<span class="blue-text">EXAMPLE:</span> CD4
|}


==Chromosomal Rearrangements (Gene Fusions)==


Put your text here and fill in the table
Other fusion partners include ''KIF5B, NPM1, STRN, TFG, TPM3, CLTC, KLC1''
|<span class="blue-text">EXAMPLE:</span> Fusions result in constitutive activation of the ''ALK'' tyrosine kinase. The most common ''ALK'' fusion is ''EML4::ALK'', with breakpoints in intron 19 of ''ALK''. At the transcript level, a variable (5’) partner gene is fused to 3’ ''ALK'' at exon 20. Rarely, ''ALK'' fusions contain exon 19 due to breakpoints in intron 18.
|<span class="blue-text">EXAMPLE:</span> N/A
|<span class="blue-text">EXAMPLE:</span> Rare (Lung adenocarcinoma)
|<span class="blue-text">EXAMPLE:</span> T
|
|<span class="blue-text">EXAMPLE:</span>


{| class="wikitable sortable"
Both balanced and unbalanced forms are observed by FISH (add references).
|-
|-
!Chromosomal Rearrangement!!Genes in Fusion (5’ or 3’ Segments)!!Pathogenic Derivative!!Prevalence
|<span class="blue-text">EXAMPLE:</span> ''ABL1''
!Diagnostic Significance (Yes, No or Unknown)
|<span class="blue-text">EXAMPLE:</span> N/A
!Prognostic Significance (Yes, No or Unknown)
|<span class="blue-text">EXAMPLE:</span> Intragenic deletion of exons 2–7 in ''EGFR'' removes the ligand-binding domain, resulting in a constitutively active tyrosine kinase with downstream activation of multiple oncogenic pathways.
!Therapeutic Significance (Yes, No or Unknown)
|<span class="blue-text">EXAMPLE:</span> N/A
!Notes
|<span class="blue-text">EXAMPLE:</span> Recurrent (IDH-wildtype Glioblastoma)
|<span class="blue-text">EXAMPLE:</span> D, P, T
|
|
|-
|-
|<span class="blue-text">EXAMPLE:</span> t(9;22)(q34;q11.2)||<span class="blue-text">EXAMPLE:</span> 3'ABL1 / 5'BCR||<span class="blue-text">EXAMPLE:</span> der(22)||<span class="blue-text">EXAMPLE:</span> 20% (COSMIC)
|
<span class="blue-text">EXAMPLE:</span> 30% (add reference)
|
|Yes
|
|No
|
|Yes
|
|<span class="blue-text">EXAMPLE:</span>
|
|
|
|}
==Individual Region Genomic Gain/Loss/LOH==


The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference).
|}
==Individual Region Genomic Gain / Loss / LOH==
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable. Do not delete table.'') </span>


Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene rearrangements. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Can refer to CGC workgroup tables as linked on the homepage if applicable. Please include references throughout the table. Do not delete the table.'') </span>
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
!Chr #!!Gain / Loss / Amp / LOH!!Minimal Region Genomic Coordinates [Genome Build]!!Minimal Region Cytoband
!Chr #!!'''Gain, Loss, Amp, LOH'''!!'''Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size]'''!!'''Relevant Gene(s)'''
!Diagnostic Significance (Yes, No or Unknown)
!'''Diagnostic, Prognostic, and Therapeutic Significance - D, P, T'''
!Prognostic Significance (Yes, No or Unknown)
!'''Established Clinical Significance Per Guidelines - Yes or No (Source)'''
!Therapeutic Significance (Yes, No or Unknown)
!'''Clinical Relevance Details/Other Notes'''
!Notes
|-
|-
|<span class="blue-text">EXAMPLE:</span>
|<span class="blue-text">EXAMPLE:</span>
7
7
|<span class="blue-text">EXAMPLE:</span> Loss
|<span class="blue-text">EXAMPLE:</span> Loss
|<span class="blue-text">EXAMPLE:</span>
|<span class="blue-text">EXAMPLE:</span>
 
chr7
chr7:1- 159,335,973 [hg38]
|<span class="blue-text">EXAMPLE:</span>
|<span class="blue-text">EXAMPLE:</span>
 
Unknown
chr7
|<span class="blue-text">EXAMPLE:</span> D, P
|Yes
|<span class="blue-text">EXAMPLE:</span> No
|Yes
|No
|<span class="blue-text">EXAMPLE:</span>
|<span class="blue-text">EXAMPLE:</span>
 
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add references).
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference).
|-
|-
|<span class="blue-text">EXAMPLE:</span>
|<span class="blue-text">EXAMPLE:</span>
8
8
|<span class="blue-text">EXAMPLE:</span> Gain
|<span class="blue-text">EXAMPLE:</span> Gain
|<span class="blue-text">EXAMPLE:</span>
|<span class="blue-text">EXAMPLE:</span>
 
chr8
chr8:1-145,138,636 [hg38]
|<span class="blue-text">EXAMPLE:</span>
Unknown
|<span class="blue-text">EXAMPLE:</span> D, P
|
|<span class="blue-text">EXAMPLE:</span>
Common recurrent secondary finding for t(8;21) (add references).
|-
|<span class="blue-text">EXAMPLE:</span>
17
|<span class="blue-text">EXAMPLE:</span> Amp
|<span class="blue-text">EXAMPLE:</span>
17q12; chr17:39,700,064-39,728,658 [hg38; 28.6 kb]
|<span class="blue-text">EXAMPLE:</span>
|<span class="blue-text">EXAMPLE:</span>
 
''ERBB2''
chr8
|<span class="blue-text">EXAMPLE:</span> D, P, T
|No
|
|No
|No
|<span class="blue-text">EXAMPLE:</span>
|<span class="blue-text">EXAMPLE:</span>
 
Amplification of ''ERBB2'' is associated with HER2 overexpression in HER2 positive breast cancer (add references). Add criteria for how amplification is defined.
Common recurrent secondary finding for t(8;21) (add reference).
|-
|
|
|
|
|
|
|
|}
|}
==Characteristic Chromosomal Patterns==
==Characteristic Chromosomal or Other Global Mutational Patterns==


Put your text here <span style="color:#0070C0">(''EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis. Do not delete table.'')</span>


Put your text here and fill in the table <span style="color:#0070C0">(I''nstructions: Included in this category are alterations such as hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis; microsatellite instability; homologous recombination deficiency; mutational signature pattern; etc. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span>
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
!Chromosomal Pattern
!Chromosomal Pattern
!Diagnostic Significance (Yes, No or Unknown)
!Molecular Pathogenesis
!Prognostic Significance (Yes, No or Unknown)
!'''Prevalence -'''
!Therapeutic Significance (Yes, No or Unknown)
'''Common >20%, Recurrent 5-20% or Rare <5% (Disease)'''
!Notes
!'''Diagnostic, Prognostic, and Therapeutic Significance - D, P, T'''
!'''Established Clinical Significance Per Guidelines - Yes or No (Source)'''
!'''Clinical Relevance Details/Other Notes'''
|-
|-
|<span class="blue-text">EXAMPLE:</span>
|<span class="blue-text">EXAMPLE:</span>
Co-deletion of 1p and 18q
Co-deletion of 1p and 18q
|Yes
|<span class="blue-text">EXAMPLE:</span> See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).
|No
|<span class="blue-text">EXAMPLE:</span> Common (Oligodendroglioma)
|No
|<span class="blue-text">EXAMPLE:</span> D, P
|
|
|-
|<span class="blue-text">EXAMPLE:</span>
|<span class="blue-text">EXAMPLE:</span>
 
Microsatellite instability - hypermutated
See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).
|
|<span class="blue-text">EXAMPLE:</span> Common (Endometrial carcinoma)
|<span class="blue-text">EXAMPLE:</span> P, T
|
|
|-
|
|
|
|
|
|
|}
|}
==Gene Mutations (SNV / INDEL)==
==Gene Mutations (SNV/INDEL)==
 
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent or common as well either disease defining and/or clinically significant. If a gene has multiple mechanisms depending on the type or site of the alteration, add multiple entries in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Details on clinical significance such as prognosis and other important information such as concomitant and mutually exclusive mutations can be provided in the notes section. Please include references throughout the table. Do not delete the table.'') </span>
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well as either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable. Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Do not delete table.'') </span>
 
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
!Gene; Genetic Alteration!!'''Presumed Mechanism (Tumor Suppressor Gene [TSG] / Oncogene / Other)'''!!'''Prevalence (COSMIC /  TCGA / Other)'''!!'''Concomitant Mutations'''!!'''Mutually Exclusive Mutations'''
!Gene!!'''Genetic Alteration'''!!'''Tumor Suppressor Gene, Oncogene, Other'''!!'''Prevalence -'''
!'''Diagnostic Significance (Yes, No or Unknown)'''
'''Common >20%, Recurrent 5-20% or Rare <5% (Disease)'''
!Prognostic Significance (Yes, No or Unknown)
!'''Diagnostic, Prognostic, and Therapeutic Significance - D, P, T  '''
!Therapeutic Significance (Yes, No or Unknown)
!'''Established Clinical Significance Per Guidelines - Yes or No (Source)'''
!Notes
!'''Clinical Relevance Details/Other Notes'''
|-
|-
|<span class="blue-text">EXAMPLE:</span> TP53; Variable LOF mutations
|<span class="blue-text">EXAMPLE:</span>''EGFR''


<span class="blue-text">EXAMPLE:</span>
<br />
 
|<span class="blue-text">EXAMPLE:</span> Exon 18-21 activating mutations
EGFR; Exon 20 mutations
|<span class="blue-text">EXAMPLE:</span> Oncogene
 
|<span class="blue-text">EXAMPLE:</span> Common (lung cancer)
<span class="blue-text">EXAMPLE:</span> BRAF; Activating mutations
|<span class="blue-text">EXAMPLE:</span> T
|<span class="blue-text">EXAMPLE:</span> TSG
|<span class="blue-text">EXAMPLE:</span> Yes (NCCN)
|<span class="blue-text">EXAMPLE:</span> 20% (COSMIC)
|<span class="blue-text">EXAMPLE:</span> Exons 18, 19, and 21 mutations are targetable for therapy. Exon 20 T790M variants cause resistance to first generation TKI therapy and are targetable by second and third generation TKIs (add references).
 
|-
<span class="blue-text">EXAMPLE:</span> 30% (add Reference)
|<span class="blue-text">EXAMPLE:</span> ''TP53''; Variable LOF mutations
|<span class="blue-text">EXAMPLE:</span> IDH1 R123H
<br />
|<span class="blue-text">EXAMPLE:</span> EGFR amplification
|<span class="blue-text">EXAMPLE:</span> Variable LOF mutations
|<span class="blue-text">EXAMPLE:</span> Tumor Supressor Gene
|<span class="blue-text">EXAMPLE:</span> Common (breast cancer)
|<span class="blue-text">EXAMPLE:</span> P
|
|<span class="blue-text">EXAMPLE:</span> >90% are somatic; rare germline alterations associated with Li-Fraumeni syndrome (add reference). Denotes a poor prognosis in breast cancer.
|-
|<span class="blue-text">EXAMPLE:</span> ''BRAF''; Activating mutations
|<span class="blue-text">EXAMPLE:</span> Activating mutations
|<span class="blue-text">EXAMPLE:</span> Oncogene
|<span class="blue-text">EXAMPLE:</span> Common (melanoma)
|<span class="blue-text">EXAMPLE:</span> T
|
|
|-
|
|
|
|
|
|
|
|
|
|
|<span class="blue-text">EXAMPLE:</span>  Excludes hairy cell leukemia (HCL) (add reference).
|}Note: A more extensive list of mutations can be found in [https://www.cbioportal.org/ <u>cBioportal</u>], [https://cancer.sanger.ac.uk/cosmic <u>COSMIC</u>], and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
<br />
|}
Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.


==Epigenomic Alterations==
==Epigenomic Alterations==


Put your text here
Put your text here
==Genes and Main Pathways Involved==
==Genes and Main Pathways Involved==


Line 224: Line 273:
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome
|-
|-
|<span class="blue-text">EXAMPLE:</span> BRAF and MAP2K1; Activating mutations
|''NRAS'', ''KRAS'', ''ARAF'', ''MAP2K1'', and ''CSF1R, NTRK1 and BRAF gene fusions''
|<span class="blue-text">EXAMPLE:</span> MAPK signaling
|MAPK/ERK pathway alterations
|<span class="blue-text">EXAMPLE:</span> Increased cell growth and proliferation
|<span class="blue-text">EXAMPLE:</span> Increased cell growth and proliferation
|-
|-
|<span class="blue-text">EXAMPLE:</span> CDKN2A; Inactivating mutations
|''PIK3CD'' mutations
|<span class="blue-text">EXAMPLE:</span> Cell cycle regulation
|PI3K pathway
|<span class="blue-text">EXAMPLE:</span> Unregulated cell division
|<span class="blue-text">EXAMPLE:</span> Unregulated cell division
|-
|-
|<span class="blue-text">EXAMPLE:</span>  KMT2C and ARID1A; Inactivating mutations
|NA
|<span class="blue-text">EXAMPLE:</span>  Histone modification, chromatin remodeling
|NA
|<span class="blue-text">EXAMPLE:</span>  Abnormal gene expression program
|NA
|}
|}
==Genetic Diagnostic Testing Methods==
==Genetic Diagnostic Testing Methods==


Put your text here


Put your text here <span style="color:#0070C0">(''Instructions: Include recommended testing type(s) to identify the clinically significant genetic alterations.'')</span>
==Familial Forms==
==Familial Forms==


Put your text here <span style="color:#0070C0">(''Instructions: Include associated hereditary conditions/syndromes that cause this entity or are caused by this entity.'') </span>
Put your text here <span style="color:#0070C0">(''Instructions: Include associated hereditary conditions/syndromes that cause this entity or are caused by this entity.'') </span>
==Additional Information==


==Additional Information==
This disease is <u>defined/characterized</u> as detailed below:
 
* Juvenile Xanthogranuloma (JXG) is a clonal expansion of non–Langerhans cell histiocytes with dermal macrophage phenotype.
 
The <u>epidemiology/prevalence</u> of this disease is detailed below:
 
* Juvenile Xanthogranuloma is a rare histiocytic neoplasm comprising about 0.5% of all pediatric tumors, seldom seen in in adults. 20-35% cases are congenital, shows male predilection and mostly (>70% cases) arise during the first year of life.
 
The <u>clinical features</u> of this disease are detailed below:
 
* JXG are generally asymptomatic. Infants may present with ≥1 cutaneous, pale yellow-tan, dome-shaped papulonodular lesions, approximately5% patients show multiple lesions. These lesions begin as raised, pink to dark brown lesions that might get flatten later and heal/ scar within few months or years. A clinical subtype of JXG- benign cephalic histiocytosis occurs in head and neck of young children, asymptomatic, self-healing papular lesions. The lesions are often large, solitary and persistent in adults which needs exclusion of Erdheim–Chester disease. JXG may occur in patients with neurofibromatosis type 1, also reported in Wiskott–Aldrich syndrome.
 
Signs and symptoms - Asymptomatic in the beginning; ≥1 cutaneous papulonodular lesions; Rarely systemic involvement with abnormal labs, ophthalmologic exam findings, seizures, hydrocephalus, diabetes Insipidus
 
Laboratory findings - Abnormal blood count, liver enzymes, metabolic tests; Cytopenia if bone marrow involved
 
The <u>sites of involvement</u> of this disease are detailed below:
 
* JXG involves and is generally confined to skin, head and neck, upper trunk and proximal extremities. Rarely ocular involvement, solitary lesion noted. Other extracutaneous sites of involvement- visceral, spinal, or intracranial area also reported rarely.
 
The <u>morphologic features</u> of this disease are detailed below:
 
'''Gross appearance:'''
 
Cutaneous JXGs: Early lesions are pink macules, later progress to form pale to tan, dome shaped lesions.
 
Visceral JXGs: Nodules with variable size and appearance.
 
'''Histopathology:'''
 
*Unencapsulated, circumscribed lesions composed of classic histiocytes, large xanthomatous histiocytes, foamy histiocytes and Touton giant cells..
*Variable numbers of lymphocytes, eosinophils, plasma cells, neutrophils, and mast cells are often intermixed along with epithelioid cells, spindle cells and oncocytic histiocytes.
*These histiocytes should not show significant nuclear pleomorphism.
 
'''Cytology''':
 
*Mononuclear or multinucleated histiocytes with kidney shaped/oval nuclei, variable numbers of lymphocytes, neutrophils, and eosinophils.
*Touton giant cells or foreign body giant cells may be present.
 
The <u>immunophenotype</u> of this disease is detailed below:
 
Positive (universal) - CD68, CD163, CD4, CD14, factor XIIIa, and fascin
 
Positive (subset) - S100 (light nuclear and cytoplasmic staining)
 
Negative (universal) - CD1a and CD207 (langerin), ALK


Put your text here
Negative (subset) - N/A


==Links==
==Links==


Put your text placeholder here (or anywhere appropriate on the page) and use the "Link" icon at the top of the page <span style="color:#0070C0">(''Instructions: Highlight text to which you want to add a link in this section or elsewhere, select the "Link" icon at the top of the page, and search the name of the internal page to which you want to link this text, or enter an external internet address by including the "<nowiki>http://www</nowiki>." portion.'')</span>


Put a link here or anywhere appropriate in this page <span style="color:#0070C0">(''Instructions: Highlight the text to which you want to add a link in this section or elsewhere, select the "Link" icon at the top of the wiki page, and search the name of the internal page to which you want to link this text, or enter an external internet address by including the "<nowiki>http://www</nowiki>." portion.'')</span>
==References==
==References==
(use the "Cite" icon at the top of the page) <span style="color:#0070C0">(''Instructions: Add each reference into the text above by clicking on where you want to insert the reference, selecting the “Cite” icon at the top of the page, and using the “Automatic” tab option to search such as by PMID to select the reference to insert. The reference list in this section will be automatically generated and sorted.''</span> <span style="color:#0070C0">''If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference''</span><span style="color:#0070C0">''.''</span><span style="color:#0070C0">) </span> <references />
(use the "Cite" icon at the top of the page) <span style="color:#0070C0">(''Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted''</span><span style="color:#0070C0">''.''</span><span style="color:#0070C0">)</span> <references />


'''EXAMPLE Book'''
'''EXAMPLE Book'''


#Arber DA, et al., (2017). Acute myeloid leukaemia with recurrent genetic abnormalities, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. IARC Press: Lyon, France, p129-171.
#John Chan et al., Juvenile xanthogranuloma, in: WHO Classification of Tumours Editorial Board. Haematolymphoid tumours. Lyon (France): International Agency for Research on Cancer; 2024. . (WHO classification of tumours series, 5th ed.; vol. 11). <nowiki>https://publications.iarc.who.int/637</nowiki>.


==Notes==
==Notes==
<nowiki>*</nowiki>Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage)Additional global feedback or concerns are also welcome.
<nowiki>*</nowiki>Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the [[Leadership|''<u>Associate Editor</u>'']] or other CCGA representativeWhen pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author.
 
Prior Author(s): 
 
       
<nowiki>*</nowiki>''Citation of this Page'': “Juvenile xanthogranuloma”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:Juvenile_xanthogranuloma</nowiki>.
<nowiki>*</nowiki>''Citation of this Page'': “Juvenile xanthogranuloma”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:Juvenile_xanthogranuloma</nowiki>.
[[Category:HAEM5]][[Category:DISEASE]][[Category:Diseases J]]
[[Category:HAEM5]]
[[Category:DISEASE]]
[[Category:Diseases J]]

Revision as of 09:55, 27 February 2025


Haematolymphoid Tumours (WHO Classification, 5th ed.)

(General Instructions – The focus of these pages is the clinically significant genetic alterations in each disease type. This is based on up-to-date knowledge from multiple resources such as PubMed and the WHO classification books. The CCGA is meant to be a supplemental resource to the WHO classification books; the CCGA captures in a continually updated wiki-stye manner the current genetics/genomics knowledge of each disease, which evolves more rapidly than books can be revised and published. If the same disease is described in multiple WHO classification books, the genetics-related information for that disease will be consolidated into a single main page that has this template (other pages would only contain a link to this main page). Use HUGO-approved gene names and symbols (italicized when appropriate), HGVS-based nomenclature for variants, as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column in a table, click nearby within the table and select the > symbol that appears. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see Author_Instructions and FAQs as well as contact your Associate Editor or Technical Support.)

Primary Author(s)*

Mayuri Shende, MBBS, DCP, FCPS, DNB, ASCP-SH CM

Scott Turner, PhD

WHO Classification of Disease

Structure Disease
Book Haematolymphoid Tumours (5th ed.)
Category Histiocytic/Dendritic cell neoplasms
Family Histiocyte/macrophage neoplasms
Type Histiocytic neoplasms
Subtype(s) Juvenile xanthogranuloma

WHO Essential and Desirable Genetic Diagnostic Criteria

(Instructions: The table will have the diagnostic criteria from the WHO book autocompleted; remove any non-genetics related criteria. If applicable, add text about other classification systems that define this entity and specify how the genetics-related criteria differ.)

WHO Essential Criteria (Genetics)*
WHO Desirable Criteria (Genetics)*
Other Classification

*Note: These are only the genetic/genomic criteria. Additional diagnostic criteria can be found in the WHO Classification of Tumours.

Related Terminology

(Instructions: The table will have the related terminology from the WHO autocompleted.)

Acceptable
Not Recommended

Gene Rearrangements

Put your text here and fill in the table (Instructions: Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.)

Driver Gene Fusion(s) and Common Partner Genes Molecular Pathogenesis Typical Chromosomal Alteration(s) Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease) Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE: ABL1 EXAMPLE: BCR::ABL1 EXAMPLE: The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1. EXAMPLE: t(9;22)(q34;q11.2) EXAMPLE: Common (CML) EXAMPLE: D, P, T EXAMPLE: Yes (WHO, NCCN) EXAMPLE:

The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference).

EXAMPLE: CIC EXAMPLE: CIC::DUX4 EXAMPLE: Typically, the last exon of CIC is fused to DUX4. The fusion breakpoint in CIC is usually intra-exonic and removes an inhibitory sequence, upregulating PEA3 genes downstream of CIC including ETV1, ETV4, and ETV5. EXAMPLE: t(4;19)(q25;q13) EXAMPLE: Common (CIC-rearranged sarcoma) EXAMPLE: D EXAMPLE:

DUX4 has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references).

EXAMPLE: ALK EXAMPLE: ELM4::ALK


Other fusion partners include KIF5B, NPM1, STRN, TFG, TPM3, CLTC, KLC1

EXAMPLE: Fusions result in constitutive activation of the ALK tyrosine kinase. The most common ALK fusion is EML4::ALK, with breakpoints in intron 19 of ALK. At the transcript level, a variable (5’) partner gene is fused to 3’ ALK at exon 20. Rarely, ALK fusions contain exon 19 due to breakpoints in intron 18. EXAMPLE: N/A EXAMPLE: Rare (Lung adenocarcinoma) EXAMPLE: T EXAMPLE:

Both balanced and unbalanced forms are observed by FISH (add references).

EXAMPLE: ABL1 EXAMPLE: N/A EXAMPLE: Intragenic deletion of exons 2–7 in EGFR removes the ligand-binding domain, resulting in a constitutively active tyrosine kinase with downstream activation of multiple oncogenic pathways. EXAMPLE: N/A EXAMPLE: Recurrent (IDH-wildtype Glioblastoma) EXAMPLE: D, P, T

Individual Region Genomic Gain/Loss/LOH

Put your text here and fill in the table (Instructions: Includes aberrations not involving gene rearrangements. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Can refer to CGC workgroup tables as linked on the homepage if applicable. Please include references throughout the table. Do not delete the table.)

Chr # Gain, Loss, Amp, LOH Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size] Relevant Gene(s) Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE:

7

EXAMPLE: Loss EXAMPLE:

chr7

EXAMPLE:

Unknown

EXAMPLE: D, P EXAMPLE: No EXAMPLE:

Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add references).

EXAMPLE:

8

EXAMPLE: Gain EXAMPLE:

chr8

EXAMPLE:

Unknown

EXAMPLE: D, P EXAMPLE:

Common recurrent secondary finding for t(8;21) (add references).

EXAMPLE:

17

EXAMPLE: Amp EXAMPLE:

17q12; chr17:39,700,064-39,728,658 [hg38; 28.6 kb]

EXAMPLE:

ERBB2

EXAMPLE: D, P, T EXAMPLE:

Amplification of ERBB2 is associated with HER2 overexpression in HER2 positive breast cancer (add references). Add criteria for how amplification is defined.

Characteristic Chromosomal or Other Global Mutational Patterns

Put your text here and fill in the table (Instructions: Included in this category are alterations such as hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis; microsatellite instability; homologous recombination deficiency; mutational signature pattern; etc. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.)

Chromosomal Pattern Molecular Pathogenesis Prevalence -

Common >20%, Recurrent 5-20% or Rare <5% (Disease)

Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE:

Co-deletion of 1p and 18q

EXAMPLE: See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). EXAMPLE: Common (Oligodendroglioma) EXAMPLE: D, P
EXAMPLE:

Microsatellite instability - hypermutated

EXAMPLE: Common (Endometrial carcinoma) EXAMPLE: P, T

Gene Mutations (SNV/INDEL)

Put your text here and fill in the table (Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent or common as well either disease defining and/or clinically significant. If a gene has multiple mechanisms depending on the type or site of the alteration, add multiple entries in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Details on clinical significance such as prognosis and other important information such as concomitant and mutually exclusive mutations can be provided in the notes section. Please include references throughout the table. Do not delete the table.)

Gene Genetic Alteration Tumor Suppressor Gene, Oncogene, Other Prevalence -

Common >20%, Recurrent 5-20% or Rare <5% (Disease)

Diagnostic, Prognostic, and Therapeutic Significance - D, P, T   Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE:EGFR


EXAMPLE: Exon 18-21 activating mutations EXAMPLE: Oncogene EXAMPLE: Common (lung cancer) EXAMPLE: T EXAMPLE: Yes (NCCN) EXAMPLE: Exons 18, 19, and 21 mutations are targetable for therapy. Exon 20 T790M variants cause resistance to first generation TKI therapy and are targetable by second and third generation TKIs (add references).
EXAMPLE: TP53; Variable LOF mutations


EXAMPLE: Variable LOF mutations EXAMPLE: Tumor Supressor Gene EXAMPLE: Common (breast cancer) EXAMPLE: P EXAMPLE: >90% are somatic; rare germline alterations associated with Li-Fraumeni syndrome (add reference). Denotes a poor prognosis in breast cancer.
EXAMPLE: BRAF; Activating mutations EXAMPLE: Activating mutations EXAMPLE: Oncogene EXAMPLE: Common (melanoma) EXAMPLE: T

Note: A more extensive list of mutations can be found in cBioportal, COSMIC, and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.

Epigenomic Alterations

Put your text here

Genes and Main Pathways Involved

Put your text here and fill in the table (Instructions: Can include references in the table. Do not delete table.)

Gene; Genetic Alteration Pathway Pathophysiologic Outcome
NRAS, KRAS, ARAF, MAP2K1, and CSF1R, NTRK1 and BRAF gene fusions MAPK/ERK pathway alterations EXAMPLE: Increased cell growth and proliferation
PIK3CD mutations PI3K pathway EXAMPLE: Unregulated cell division
NA NA NA

Genetic Diagnostic Testing Methods

Put your text here (Instructions: Include recommended testing type(s) to identify the clinically significant genetic alterations.)

Familial Forms

Put your text here (Instructions: Include associated hereditary conditions/syndromes that cause this entity or are caused by this entity.)

Additional Information

This disease is defined/characterized as detailed below:

  • Juvenile Xanthogranuloma (JXG) is a clonal expansion of non–Langerhans cell histiocytes with dermal macrophage phenotype.

The epidemiology/prevalence of this disease is detailed below:

  • Juvenile Xanthogranuloma is a rare histiocytic neoplasm comprising about 0.5% of all pediatric tumors, seldom seen in in adults. 20-35% cases are congenital, shows male predilection and mostly (>70% cases) arise during the first year of life.

The clinical features of this disease are detailed below:

  • JXG are generally asymptomatic. Infants may present with ≥1 cutaneous, pale yellow-tan, dome-shaped papulonodular lesions, approximately5% patients show multiple lesions. These lesions begin as raised, pink to dark brown lesions that might get flatten later and heal/ scar within few months or years. A clinical subtype of JXG- benign cephalic histiocytosis occurs in head and neck of young children, asymptomatic, self-healing papular lesions. The lesions are often large, solitary and persistent in adults which needs exclusion of Erdheim–Chester disease. JXG may occur in patients with neurofibromatosis type 1, also reported in Wiskott–Aldrich syndrome.

Signs and symptoms - Asymptomatic in the beginning; ≥1 cutaneous papulonodular lesions; Rarely systemic involvement with abnormal labs, ophthalmologic exam findings, seizures, hydrocephalus, diabetes Insipidus

Laboratory findings - Abnormal blood count, liver enzymes, metabolic tests; Cytopenia if bone marrow involved

The sites of involvement of this disease are detailed below:

  • JXG involves and is generally confined to skin, head and neck, upper trunk and proximal extremities. Rarely ocular involvement, solitary lesion noted. Other extracutaneous sites of involvement- visceral, spinal, or intracranial area also reported rarely.

The morphologic features of this disease are detailed below:

Gross appearance:

Cutaneous JXGs: Early lesions are pink macules, later progress to form pale to tan, dome shaped lesions.

Visceral JXGs: Nodules with variable size and appearance.

Histopathology:

  • Unencapsulated, circumscribed lesions composed of classic histiocytes, large xanthomatous histiocytes, foamy histiocytes and Touton giant cells..
  • Variable numbers of lymphocytes, eosinophils, plasma cells, neutrophils, and mast cells are often intermixed along with epithelioid cells, spindle cells and oncocytic histiocytes.
  • These histiocytes should not show significant nuclear pleomorphism.

Cytology:

  • Mononuclear or multinucleated histiocytes with kidney shaped/oval nuclei, variable numbers of lymphocytes, neutrophils, and eosinophils.
  • Touton giant cells or foreign body giant cells may be present.

The immunophenotype of this disease is detailed below:

Positive (universal) - CD68, CD163, CD4, CD14, factor XIIIa, and fascin

Positive (subset) - S100 (light nuclear and cytoplasmic staining)

Negative (universal) - CD1a and CD207 (langerin), ALK

Negative (subset) - N/A

Links

Put a link here or anywhere appropriate in this page (Instructions: Highlight the text to which you want to add a link in this section or elsewhere, select the "Link" icon at the top of the wiki page, and search the name of the internal page to which you want to link this text, or enter an external internet address by including the "http://www." portion.)

References

(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted.)

EXAMPLE Book

  1. John Chan et al., Juvenile xanthogranuloma, in: WHO Classification of Tumours Editorial Board. Haematolymphoid tumours. Lyon (France): International Agency for Research on Cancer; 2024. . (WHO classification of tumours series, 5th ed.; vol. 11). https://publications.iarc.who.int/637.

Notes

*Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the Associate Editor or other CCGA representative.  When pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author.

Prior Author(s):


*Citation of this Page: “Juvenile xanthogranuloma”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 02/27/2025, https://ccga.io/index.php/HAEM5:Juvenile_xanthogranuloma.