HAEM5:Acute myeloid leukaemia with CEBPA mutation: Difference between revisions

From Compendium of Cancer Genome Aberrations
Jump to navigation Jump to search
[checked revision][pending revision]
No edit summary
Xinxiu.Xu (talk | contribs)
No edit summary
(2 intermediate revisions by the same user not shown)
Line 36: Line 36:


==WHO Essential and Desirable Genetic Diagnostic Criteria==
==WHO Essential and Desirable Genetic Diagnostic Criteria==
<span style="color:#0070C0">(''Instructions: The table will have the diagnostic criteria from the WHO book <u>autocompleted</u>; remove any <u>non</u>-genetics related criteria. If applicable, add text about other classification'' ''systems that define this entity and specify how the genetics-related criteria differ.'')</span>
{| class="wikitable"
{| class="wikitable"
|+
|+
|WHO Essential Criteria (Genetics)*
|WHO Essential Criteria (Genetics)*
|
|>= 20% blasts with a myeloid immunophenotype in the bone marrow or blood; presence of biallelic mutations in ''CEBPA'', or a single mutation located in the bZIP region; absence of criteria allowing for classification into other AMLs with defining genetic abnormalities; not fulling diagnostic criteria for myeloid neoplasm post cytotoxic therapy.
|-
|-
|WHO Desirable Criteria (Genetics)*
|WHO Desirable Criteria (Genetics)*
|
|NA
|-
|-
|Other Classification
|Other Classification
Line 50: Line 49:
<nowiki>*</nowiki>Note: These are only the genetic/genomic criteria. Additional diagnostic criteria can be found in the [https://tumourclassification.iarc.who.int/home <u>WHO Classification of Tumours</u>].
<nowiki>*</nowiki>Note: These are only the genetic/genomic criteria. Additional diagnostic criteria can be found in the [https://tumourclassification.iarc.who.int/home <u>WHO Classification of Tumours</u>].
==Related Terminology==
==Related Terminology==
<span style="color:#0070C0">(''Instructions: The table will have the related terminology from the WHO <u>autocompleted</u>.)''</span>
{| class="wikitable"
{| class="wikitable"
|+
|+
|Acceptable
|Acceptable
|
|acute myeloid leukaemia with biallelic mutation of ''CEBPA.''
|-
|-
|Not Recommended
|Not Recommended
Line 63: Line 61:




Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span>
None.
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
Line 89: Line 87:


''DUX4'' has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references).
''DUX4'' has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references).
|-
|<span class="blue-text">EXAMPLE:</span> ''ALK''
|<span class="blue-text">EXAMPLE:</span> ''ELM4::ALK''
Other fusion partners include ''KIF5B, NPM1, STRN, TFG, TPM3, CLTC, KLC1''
|<span class="blue-text">EXAMPLE:</span> Fusions result in constitutive activation of the ''ALK'' tyrosine kinase. The most common ''ALK'' fusion is ''EML4::ALK'', with breakpoints in intron 19 of ''ALK''. At the transcript level, a variable (5’) partner gene is fused to 3’ ''ALK'' at exon 20. Rarely, ''ALK'' fusions contain exon 19 due to breakpoints in intron 18.
|<span class="blue-text">EXAMPLE:</span> N/A
|<span class="blue-text">EXAMPLE:</span> Rare (Lung adenocarcinoma)
|<span class="blue-text">EXAMPLE:</span> T
|
|<span class="blue-text">EXAMPLE:</span>
Both balanced and unbalanced forms are observed by FISH (add references).
|-
|<span class="blue-text">EXAMPLE:</span> ''ABL1''
|<span class="blue-text">EXAMPLE:</span> N/A
|<span class="blue-text">EXAMPLE:</span> Intragenic deletion of exons 2–7 in ''EGFR'' removes the ligand-binding domain, resulting in a constitutively active tyrosine kinase with downstream activation of multiple oncogenic pathways.
|<span class="blue-text">EXAMPLE:</span> N/A
|<span class="blue-text">EXAMPLE:</span> Recurrent (IDH-wildtype Glioblastoma)
|<span class="blue-text">EXAMPLE:</span> D, P, T
|
|
|-
|-
|
|
Line 122: Line 97:
|
|
|}
|}
<blockquote class="blockedit">{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}}</blockquote>
None
{| class="wikitable sortable"
|-
!Chromosomal Rearrangement!!Genes in Fusion (5’ or 3’ Segments)!!Pathogenic Derivative!!Prevalence
|-
|<span class="blue-text">EXAMPLE:</span> t(9;22)(q34;q11.2)||<span class="blue-text">EXAMPLE:</span> 3'ABL1 / 5'BCR||<span class="blue-text">EXAMPLE:</span> der(22)||<span class="blue-text">EXAMPLE:</span> 5%
|-
|<span class="blue-text">EXAMPLE:</span> t(8;21)(q22;q22)||<span class="blue-text">EXAMPLE:</span> 5'RUNX1 / 3'RUNXT1||<span class="blue-text">EXAMPLE:</span> der(8)||<span class="blue-text">EXAMPLE:</span> 5%
|}
<blockquote class="blockedit">
<center><span style="color:Maroon">'''End of V4 Section'''</span>
----
</blockquote>
<blockquote class="blockedit">{{Box-round|title=v4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).|Please incorporate this section into the relevant tables found in:
* Chromosomal Rearrangements (Gene Fusions)
* Individual Region Genomic Gain/Loss/LOH
* Characteristic Chromosomal Patterns
* Gene Mutations (SNV/INDEL)}}</blockquote>
Patients with biallelic ''CEBPA'' mutations and a normal karyotype have a more favorable prognosis than those with monoallelic or no ''CEBPA'' mutations, with higher complete remission rates and longer disease-free survival, relapse-free survival, event-free survival, and overall survival<ref name=":0">Arber DA, et al., (2017). Acute myeloid leukaemia with recurrent genetic abnormalities, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. Revised 4th Edition. IARC Press: Lyon, France, p142-144.</ref>.
Patients with abnormal karyotypes (but not complex karyotypes) and biallelic ''CEBPA'' mutations also have longer disease-free survival, event-free survival, and overall survival when compared to patients with monoallelic or no ''CEBPA'' mutations<ref name=":0" />.
<blockquote class="blockedit">
<center><span style="color:Maroon">'''End of V4 Section'''</span>
----
</blockquote>
==Individual Region Genomic Gain/Loss/LOH==
==Individual Region Genomic Gain/Loss/LOH==




Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene rearrangements. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Can refer to CGC workgroup tables as linked on the homepage if applicable. Please include references throughout the table. Do not delete the table.'') </span>
None.
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
Line 210: Line 152:
|
|
|}
|}
<blockquote class="blockedit">{{Box-round|title=v4:Genomic Gain/Loss/LOH|The content below was from the old template. Please incorporate above.}}</blockquote>
None
{| class="wikitable sortable"
|-
!Chromosome Number!!Gain/Loss/Amp/LOH!!Region
|-
|<span class="blue-text">EXAMPLE:</span> 8||<span class="blue-text">EXAMPLE:</span> Gain||<span class="blue-text">EXAMPLE:</span> chr8:0-1000000
|-
|<span class="blue-text">EXAMPLE:</span> 7||<span class="blue-text">EXAMPLE:</span> Loss||<span class="blue-text">EXAMPLE:</span> chr7:0-1000000
|}
<blockquote class="blockedit">
<center><span style="color:Maroon">'''End of V4 Section'''</span>
----
</blockquote>
==Characteristic Chromosomal or Other Global Mutational Patterns==
==Characteristic Chromosomal or Other Global Mutational Patterns==




Put your text here and fill in the table <span style="color:#0070C0">(I''nstructions: Included in this category are alterations such as hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis; microsatellite instability; homologous recombination deficiency; mutational signature pattern; etc. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span>
None.
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
Line 265: Line 189:
|
|
|}
|}
==Gene Mutations (SNV/INDEL)==


<blockquote class="blockedit">{{Box-round|title=v4:Characteristic Chromosomal Aberrations / Patterns|The content below was from the old template. Please incorporate above.}}</blockquote>
None
<blockquote class="blockedit">
<center><span style="color:Maroon">'''End of V4 Section'''</span>
----
</blockquote>
==Gene Mutations (SNV/INDEL)==


Patients with biallelic ''CEBPA'' mutations and a normal karyotype have a more favorable prognosis than those with monoallelic or no ''CEBPA'' mutations, with higher complete remission rates and longer disease-free survival, relapse-free survival, event-free survival, and overall survival<ref name=":0">Arber DA, et al., (2017). Acute myeloid leukaemia with recurrent genetic abnormalities, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. Revised 4th Edition. IARC Press: Lyon, France, p142-144.</ref>.
Patients with abnormal karyotypes (but not complex karyotypes) and biallelic ''CEBPA'' mutations also have longer disease-free survival, event-free survival, and overall survival when compared to patients with monoallelic or no ''CEBPA'' mutations<ref name=":0" />. Detection of bi''CEBPA'' should raise possibility of germline mutation. Approximately 5-10%  of bi''CEBPA'' AML cases have a germline N-terminal<ref>{{Cite journal|last=Taskesen|first=Erdogan|last2=Bullinger|first2=Lars|last3=Corbacioglu|first3=Andrea|last4=Sanders|first4=Mathijs A.|last5=Erpelinck|first5=Claudia A. J.|last6=Wouters|first6=Bas J.|last7=van der Poel-van de Luytgaarde|first7=Sonja C.|last8=Damm|first8=Frederik|last9=Krauter|first9=Jürgen|date=2011-02-24|title=Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity|url=https://pubmed.ncbi.nlm.nih.gov/21177436|journal=Blood|volume=117|issue=8|pages=2469–2475|doi=10.1182/blood-2010-09-307280|issn=1528-0020|pmid=21177436}}</ref>. In the familia from, AML has very high penetrance and presents relatively early (median aga: 245.5 years)<ref>{{Cite journal|last=Tawana|first=Kiran|last2=Wang|first2=Jun|last3=Renneville|first3=Aline|last4=Bödör|first4=Csaba|last5=Hills|first5=Robert|last6=Loveday|first6=Chey|last7=Savic|first7=Aleksandar|last8=Van Delft|first8=Frederik W.|last9=Treleaven|first9=Jennifer|date=2015-09-03|title=Disease evolution and outcomes in familial AML with germline CEBPA mutations|url=https://pubmed.ncbi.nlm.nih.gov/26162409|journal=Blood|volume=126|issue=10|pages=1214–1223|doi=10.1182/blood-2015-05-647172|issn=1528-0020|pmid=26162409}}</ref>. There are some notable familial AML-Associated ''CEBPA'' germline pathogenic variants: c.68delC, p.Pro23ArgfsTer137<ref>{{Cite journal|last=Smith|first=Matthew L.|last2=Cavenagh|first2=Jamie D.|last3=Lister|first3=T. Andrew|last4=Fitzgibbon|first4=Jude|date=2004-12-02|title=Mutation of CEBPA in familial acute myeloid leukemia|url=https://pubmed.ncbi.nlm.nih.gov/15575056|journal=The New England Journal of Medicine|volume=351|issue=23|pages=2403–2407|doi=10.1056/NEJMoa041331|issn=1533-4406|pmid=15575056}}</ref>; c.68dupC, p.His24AlafsTer84<ref>{{Cite journal|last=Sellick|first=G. S.|last2=Spendlove|first2=H. E.|last3=Catovsky|first3=D.|last4=Pritchard-Jones|first4=K.|last5=Houlston|first5=R. S.|date=2005-07|title=Further evidence that germline CEBPA mutations cause dominant inheritance of acute myeloid leukaemia|url=https://pubmed.ncbi.nlm.nih.gov/15902292|journal=Leukemia|volume=19|issue=7|pages=1276–1278|doi=10.1038/sj.leu.2403788|issn=0887-6924|pmid=15902292}}</ref><ref>{{Cite journal|last=Renneville|first=A.|last2=Mialou|first2=V.|last3=Philippe|first3=N.|last4=Kagialis-Girard|first4=S.|last5=Biggio|first5=V.|last6=Zabot|first6=M.-T.|last7=Thomas|first7=X.|last8=Bertrand|first8=Y.|last9=Preudhomme|first9=C.|date=2009-04|title=Another pedigree with familial acute myeloid leukemia and germline CEBPA mutation|url=https://pubmed.ncbi.nlm.nih.gov/18946494|journal=Leukemia|volume=23|issue=4|pages=804–806|doi=10.1038/leu.2008.294|issn=1476-5551|pmid=18946494}}</ref><ref>{{Cite journal|last=Tawana|first=Kiran|last2=Wang|first2=Jun|last3=Renneville|first3=Aline|last4=Bödör|first4=Csaba|last5=Hills|first5=Robert|last6=Loveday|first6=Chey|last7=Savic|first7=Aleksandar|last8=Van Delft|first8=Frederik W.|last9=Treleaven|first9=Jennifer|date=2015-09-03|title=Disease evolution and outcomes in familial AML with germline CEBPA mutations|url=https://pubmed.ncbi.nlm.nih.gov/26162409|journal=Blood|volume=126|issue=10|pages=1214–1223|doi=10.1182/blood-2015-05-647172|issn=1528-0020|pmid=26162409}}</ref>; c.141delC, p.Ala48ProfsTer112<ref name=":1">{{Cite journal|last=Pabst|first=Thomas|last2=Eyholzer|first2=Marianne|last3=Haefliger|first3=Simon|last4=Schardt|first4=Julian|last5=Mueller|first5=Beatrice U.|date=2008-11-01|title=Somatic CEBPA mutations are a frequent second event in families with germline CEBPA mutations and familial acute myeloid leukemia|url=https://pubmed.ncbi.nlm.nih.gov/18768433|journal=Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology|volume=26|issue=31|pages=5088–5093|doi=10.1200/JCO.2008.16.5563|issn=1527-7755|pmid=18768433}}</ref>; c.147_165del19, p.Glu50AlafsTer104<ref>{{Cite journal|last=Debeljak|first=Maruša|last2=Kitanovski|first2=Lidija|last3=Pajič|first3=Tadej|last4=Jazbec|first4=Janez|date=2013-07|title=Concordant acute myeloblastic leukemia in monozygotic twins with germline and shared somatic mutations in the gene for CCAAT-enhancer-binding protein α with 13 years difference at onset|url=https://pubmed.ncbi.nlm.nih.gov/23716546|journal=Haematologica|volume=98|issue=7|pages=e73–74|doi=10.3324/haematol.2012.082578|issn=1592-8721|pmc=3696596|pmid=23716546}}</ref>; c.158delG, p.Gly53AlafsTer107<ref name=":4">{{Cite journal|last=Taskesen|first=Erdogan|last2=Bullinger|first2=Lars|last3=Corbacioglu|first3=Andrea|last4=Sanders|first4=Mathijs A.|last5=Erpelinck|first5=Claudia A. J.|last6=Wouters|first6=Bas J.|last7=van der Poel-van de Luytgaarde|first7=Sonja C.|last8=Damm|first8=Frederik|last9=Krauter|first9=Jürgen|date=2011-02-24|title=Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity|url=https://pubmed.ncbi.nlm.nih.gov/21177436|journal=Blood|volume=117|issue=8|pages=2469–2475|doi=10.1182/blood-2010-09-307280|issn=1528-0020|pmid=21177436}}</ref>; c.189delC, p.Asp63GlufsTer97<ref name=":4" />; c.314_315insT, p.Phe106LeufsTer2<ref name=":1" />; c.932A>C, p.Gln311Pro<ref>{{Cite journal|last=Pathak|first=Anand|last2=Seipel|first2=Katja|last3=Pemov|first3=Alexander|last4=Dewan|first4=Ramita|last5=Brown|first5=Christina|last6=Ravichandran|first6=Sarangan|last7=Luke|first7=Brian T.|last8=Malasky|first8=Michael|last9=Suman|first9=Shalabh|date=2016-07|title=Whole exome sequencing reveals a C-terminal germline variant in CEBPA-associated acute myeloid leukemia: 45-year follow up of a large family|url=https://pubmed.ncbi.nlm.nih.gov/26721895|journal=Haematologica|volume=101|issue=7|pages=846–852|doi=10.3324/haematol.2015.130799|issn=1592-8721|pmc=5004464|pmid=26721895}}</ref>; c.442G>T, p.Glu148Ter<ref>{{Cite journal|last=Mendoza|first=Hadrian|last2=Chen|first2=Po-Han|last3=Pine|first3=Alexander B.|last4=Siddon|first4=Alexa J.|last5=Bale|first5=Allen E.|last6=Gowda|first6=Lohith|last7=Killie|first7=Amy|last8=Richards|first8=Jonica|last9=Varin-Tremblay|first9=Camille|date=2021-05|title=A case of acute myeloid leukemia with unusual germline CEBPA mutation: lessons learned about mutation detection, location, and penetrance|url=https://pubmed.ncbi.nlm.nih.gov/33345654|journal=Leukemia & Lymphoma|volume=62|issue=5|pages=1251–1254|doi=10.1080/10428194.2020.1861276|issn=1029-2403|pmid=33345654}}</ref>.


Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent or common as well either disease defining and/or clinically significant. If a gene has multiple mechanisms depending on the type or site of the alteration, add multiple entries in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Details on clinical significance such as prognosis and other important information such as concomitant and mutually exclusive mutations can be provided in the notes section. Please include references throughout the table. Do not delete the table.'') </span>
Pathogenic mutations in ''CEBPA'' are predominantly insertion/deletion frameshift mutations in the N-terminal TAD region and in-frame C-terminal bZIP mutations. Patients with biCEBPA and smbZIP-CEBPA are younger and have higher white blood cell counts than those with a single mutation in the N-terminal TAD region<ref name=":5">{{Cite journal|last=Taube|first=Franziska|last2=Georgi|first2=Julia Annabell|last3=Kramer|first3=Michael|last4=Stasik|first4=Sebastian|last5=Middeke|first5=Jan Moritz|last6=Röllig|first6=Christoph|last7=Krug|first7=Utz|last8=Krämer|first8=Alwin|last9=Scholl|first9=Sebastian|date=2022-01-06|title=CEBPA mutations in 4708 patients with acute myeloid leukemia: differential impact of bZIP and TAD mutations on outcome|url=https://pubmed.ncbi.nlm.nih.gov/34320176|journal=Blood|volume=139|issue=1|pages=87–103|doi=10.1182/blood.2020009680|issn=1528-0020|pmid=34320176}}</ref>. No particular mutational hotspots exist but the following table records the most reported mutations in the COSMIC database (frequency based on a count out of 1523 mutations):
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
Line 286: Line 204:
!'''Clinical Relevance Details/Other Notes'''
!'''Clinical Relevance Details/Other Notes'''
|-
|-
|<span class="blue-text">EXAMPLE:</span>''EGFR''
|''CEBPA''


<br />
<br />
|<span class="blue-text">EXAMPLE:</span> Exon 18-21 activating mutations
|c.939_940insAAG, p.K313_V314insK
|<span class="blue-text">EXAMPLE:</span> Oncogene
|Oncogene
|<span class="blue-text">EXAMPLE:</span> Common (lung cancer)
|Recurrent (AML)
|<span class="blue-text">EXAMPLE:</span> T
|D, P, T
|<span class="blue-text">EXAMPLE:</span> Yes (NCCN)
|Yes (NCCN)
|<span class="blue-text">EXAMPLE:</span> Exons 18, 19, and 21 mutations are targetable for therapy. Exon 20 T790M variants cause resistance to first generation TKI therapy and are targetable by second and third generation TKIs (add references).
|AML with ''CEBPA'' mutation is associated with favorable prognosis<ref>{{Cite journal|displayauthors=1|last=Pollyea|first=DA|date=2025|title=NCCN Clinical Practice Guidelines in Oncology: AML.|url=NCCN.org|journal=NCCN|volume=|pages=|via=}}</ref>.
 
 
AML with CEBPA mutation constitutes ~5% pf pediatric AML and 5-11% adult AML<ref>{{Cite journal|last=Tarlock|first=Katherine|last2=Lamble|first2=Adam J.|last3=Wang|first3=Yi-Cheng|last4=Gerbing|first4=Robert B.|last5=Ries|first5=Rhonda E.|last6=Loken|first6=Michael R.|last7=Brodersen|first7=Lisa Eidenschink|last8=Pardo|first8=Laura|last9=Leonti|first9=Amanda|date=2021-09-30|title=CEBPA-bZip mutations are associated with favorable prognosis in de novo AML: a report from the Children's Oncology Group|url=https://pubmed.ncbi.nlm.nih.gov/33951732|journal=Blood|volume=138|issue=13|pages=1137–1147|doi=10.1182/blood.2020009652|issn=1528-0020|pmc=8570058|pmid=33951732}}</ref><ref>{{Cite journal|last=Wakita|first=Satoshi|last2=Sakaguchi|first2=Masahiro|last3=Oh|first3=Iekuni|last4=Kako|first4=Shinichi|last5=Toya|first5=Takashi|last6=Najima|first6=Yuho|last7=Doki|first7=Noriko|last8=Kanda|first8=Junya|last9=Kuroda|first9=Junya|date=2022-01-11|title=Prognostic impact of CEBPA bZIP domain mutation in acute myeloid leukemia|url=https://pubmed.ncbi.nlm.nih.gov/34448807|journal=Blood Advances|volume=6|issue=1|pages=238–247|doi=10.1182/bloodadvances.2021004292|issn=2473-9537|pmc=8753195|pmid=34448807}}</ref><ref name=":5" />.
|-
|-
|<span class="blue-text">EXAMPLE:</span> ''TP53''; Variable LOF mutations
|''CEBPA''
<br />
<br />
|<span class="blue-text">EXAMPLE:</span> Variable LOF mutations
|c.68_69insC, p.H24fs*84
|<span class="blue-text">EXAMPLE:</span> Tumor Supressor Gene
|Oncogene
|<span class="blue-text">EXAMPLE:</span> Common (breast cancer)
|Recurrent (AML)
|<span class="blue-text">EXAMPLE:</span> P
|D, P, T
|Yes (NCCN)
|
|
|<span class="blue-text">EXAMPLE:</span> >90% are somatic; rare germline alterations associated with Li-Fraumeni syndrome (add reference). Denotes a poor prognosis in breast cancer.
|-
|-
|<span class="blue-text">EXAMPLE:</span> ''BRAF''; Activating mutations
|''CEBPA''
|<span class="blue-text">EXAMPLE:</span> Activating mutations
|c.247delC, p.Q83fs*77
|<span class="blue-text">EXAMPLE:</span> Oncogene
|Oncogene
|<span class="blue-text">EXAMPLE:</span> Common (melanoma)
|Recurrent (AML)
|<span class="blue-text">EXAMPLE:</span> T
|D, P, T
|Yes (NCCN)
|
|
|-
|''CEBPA''
|c.936_937insCAG, p.Q312_K313insQ
|Oncogene
|Recurrent (AML)
|D, P, T
|Yes (NCCN)
|
|-
|''CEBPA''
|c.912_913insTTG, p.K304_Q305insL
|Oncogene
|Recurrent (AML)
|D, P, T
|Yes (NCCN)
|
|-
|
|
|Oncogene
|Recurrent (AML)
|D, P, T
|Yes (NCCN)
|
|-
|
|
|Oncogene
|Recurrent (AML)
|D, P, T
|Yes (NCCN)
|
|
|-
|-
Line 321: Line 274:
|
|
|}Note: A more extensive list of mutations can be found in [https://www.cbioportal.org/ <u>cBioportal</u>], [https://cancer.sanger.ac.uk/cosmic <u>COSMIC</u>], and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
|}Note: A more extensive list of mutations can be found in [https://www.cbioportal.org/ <u>cBioportal</u>], [https://cancer.sanger.ac.uk/cosmic <u>COSMIC</u>], and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
<br />


<blockquote class="blockedit">{{Box-round|title=v4:Gene Mutations (SNV/INDEL)|The content below was from the old template. Please incorporate above.}}</blockquote>
<blockquote class="blockedit">{{Box-round|title=v4:Gene Mutations (SNV/INDEL)|The content below was from the old template. Please incorporate above.}}</blockquote>

Revision as of 13:31, 17 May 2025


Haematolymphoid Tumours (WHO Classification, 5th ed.)

editContent Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification
This page was converted to the new template on 2023-12-07. The original page can be found at HAEM4:Acute Myeloid Leukemia (AML) with Biallelic Mutations of CEBPA.

(General Instructions – The focus of these pages is the clinically significant genetic alterations in each disease type. This is based on up-to-date knowledge from multiple resources such as PubMed and the WHO classification books. The CCGA is meant to be a supplemental resource to the WHO classification books; the CCGA captures in a continually updated wiki-stye manner the current genetics/genomics knowledge of each disease, which evolves more rapidly than books can be revised and published. If the same disease is described in multiple WHO classification books, the genetics-related information for that disease will be consolidated into a single main page that has this template (other pages would only contain a link to this main page). Use HUGO-approved gene names and symbols (italicized when appropriate), HGVS-based nomenclature for variants, as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column in a table, click nearby within the table and select the > symbol that appears. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see Author_Instructions and FAQs as well as contact your Associate Editor or Technical Support.)

Primary Author(s)*

Xinxiu Xu, Vanderbilt University Medical Center

WHO Classification of Disease

Structure Disease
Book Haematolymphoid Tumours (5th ed.)
Category Myeloid proliferations and neoplasms
Family Acute myeloid leukaemia
Type Acute myeloid leukaemia with defining genetic abnormalities
Subtype(s) Acute myeloid leukaemia with CEBPA mutation

WHO Essential and Desirable Genetic Diagnostic Criteria

WHO Essential Criteria (Genetics)* >= 20% blasts with a myeloid immunophenotype in the bone marrow or blood; presence of biallelic mutations in CEBPA, or a single mutation located in the bZIP region; absence of criteria allowing for classification into other AMLs with defining genetic abnormalities; not fulling diagnostic criteria for myeloid neoplasm post cytotoxic therapy.
WHO Desirable Criteria (Genetics)* NA
Other Classification

*Note: These are only the genetic/genomic criteria. Additional diagnostic criteria can be found in the WHO Classification of Tumours.

Related Terminology

Acceptable acute myeloid leukaemia with biallelic mutation of CEBPA.
Not Recommended

Gene Rearrangements

None.

Driver Gene Fusion(s) and Common Partner Genes Molecular Pathogenesis Typical Chromosomal Alteration(s) Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease) Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE: ABL1 EXAMPLE: BCR::ABL1 EXAMPLE: The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1. EXAMPLE: t(9;22)(q34;q11.2) EXAMPLE: Common (CML) EXAMPLE: D, P, T EXAMPLE: Yes (WHO, NCCN) EXAMPLE:

The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference).

EXAMPLE: CIC EXAMPLE: CIC::DUX4 EXAMPLE: Typically, the last exon of CIC is fused to DUX4. The fusion breakpoint in CIC is usually intra-exonic and removes an inhibitory sequence, upregulating PEA3 genes downstream of CIC including ETV1, ETV4, and ETV5. EXAMPLE: t(4;19)(q25;q13) EXAMPLE: Common (CIC-rearranged sarcoma) EXAMPLE: D EXAMPLE:

DUX4 has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references).

Individual Region Genomic Gain/Loss/LOH

None.

Chr # Gain, Loss, Amp, LOH Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size] Relevant Gene(s) Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE:

7

EXAMPLE: Loss EXAMPLE:

chr7

EXAMPLE:

Unknown

EXAMPLE: D, P EXAMPLE: No EXAMPLE:

Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add references).

EXAMPLE:

8

EXAMPLE: Gain EXAMPLE:

chr8

EXAMPLE:

Unknown

EXAMPLE: D, P EXAMPLE:

Common recurrent secondary finding for t(8;21) (add references).

EXAMPLE:

17

EXAMPLE: Amp EXAMPLE:

17q12; chr17:39,700,064-39,728,658 [hg38; 28.6 kb]

EXAMPLE:

ERBB2

EXAMPLE: D, P, T EXAMPLE:

Amplification of ERBB2 is associated with HER2 overexpression in HER2 positive breast cancer (add references). Add criteria for how amplification is defined.

Characteristic Chromosomal or Other Global Mutational Patterns

None.

Chromosomal Pattern Molecular Pathogenesis Prevalence -

Common >20%, Recurrent 5-20% or Rare <5% (Disease)

Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE:

Co-deletion of 1p and 18q

EXAMPLE: See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). EXAMPLE: Common (Oligodendroglioma) EXAMPLE: D, P
EXAMPLE:

Microsatellite instability - hypermutated

EXAMPLE: Common (Endometrial carcinoma) EXAMPLE: P, T

Gene Mutations (SNV/INDEL)

Patients with biallelic CEBPA mutations and a normal karyotype have a more favorable prognosis than those with monoallelic or no CEBPA mutations, with higher complete remission rates and longer disease-free survival, relapse-free survival, event-free survival, and overall survival[1]. Patients with abnormal karyotypes (but not complex karyotypes) and biallelic CEBPA mutations also have longer disease-free survival, event-free survival, and overall survival when compared to patients with monoallelic or no CEBPA mutations[1]. Detection of biCEBPA should raise possibility of germline mutation. Approximately 5-10% of biCEBPA AML cases have a germline N-terminal[2]. In the familia from, AML has very high penetrance and presents relatively early (median aga: 245.5 years)[3]. There are some notable familial AML-Associated CEBPA germline pathogenic variants: c.68delC, p.Pro23ArgfsTer137[4]; c.68dupC, p.His24AlafsTer84[5][6][7]; c.141delC, p.Ala48ProfsTer112[8]; c.147_165del19, p.Glu50AlafsTer104[9]; c.158delG, p.Gly53AlafsTer107[10]; c.189delC, p.Asp63GlufsTer97[10]; c.314_315insT, p.Phe106LeufsTer2[8]; c.932A>C, p.Gln311Pro[11]; c.442G>T, p.Glu148Ter[12].

Pathogenic mutations in CEBPA are predominantly insertion/deletion frameshift mutations in the N-terminal TAD region and in-frame C-terminal bZIP mutations. Patients with biCEBPA and smbZIP-CEBPA are younger and have higher white blood cell counts than those with a single mutation in the N-terminal TAD region[13]. No particular mutational hotspots exist but the following table records the most reported mutations in the COSMIC database (frequency based on a count out of 1523 mutations):

Gene Genetic Alteration Tumor Suppressor Gene, Oncogene, Other Prevalence -

Common >20%, Recurrent 5-20% or Rare <5% (Disease)

Diagnostic, Prognostic, and Therapeutic Significance - D, P, T   Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
CEBPA


c.939_940insAAG, p.K313_V314insK Oncogene Recurrent (AML) D, P, T Yes (NCCN) AML with CEBPA mutation is associated with favorable prognosis[14].


AML with CEBPA mutation constitutes ~5% pf pediatric AML and 5-11% adult AML[15][16][13].

CEBPA


c.68_69insC, p.H24fs*84 Oncogene Recurrent (AML) D, P, T Yes (NCCN)
CEBPA c.247delC, p.Q83fs*77 Oncogene Recurrent (AML) D, P, T Yes (NCCN)
CEBPA c.936_937insCAG, p.Q312_K313insQ Oncogene Recurrent (AML) D, P, T Yes (NCCN)
CEBPA c.912_913insTTG, p.K304_Q305insL Oncogene Recurrent (AML) D, P, T Yes (NCCN)
Oncogene Recurrent (AML) D, P, T Yes (NCCN)
Oncogene Recurrent (AML) D, P, T Yes (NCCN)

Note: A more extensive list of mutations can be found in cBioportal, COSMIC, and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.



editv4:Gene Mutations (SNV/INDEL)
The content below was from the old template. Please incorporate above.

Pathogenic mutations in CEBPA are predominantly insertion/deletion frameshift mutations in the N-terminal TAD region and in-frame C-terminal bZIP mutations. No particular mutational hotspots exist but the following table records the most reported mutations in the COSMIC database (frequency based on a count out of 1523 mutations):

Gene Mutation Oncogene/Tumor Suppressor/Other Presumed Mechanism (LOF/GOF/Other; Driver/Passenger) Prevalence (COSMIC/TCGA/Other)
CEBPA c.939_940insAAG, p.K313_V314insK Oncogene LOF 52
CEBPA c.68_69insC, p.H24fs*84 Oncogene LOF 43
CEBPA c.247delC, p.Q83fs*77 Oncogene LOF 32
CEBPA c.936_937insCAG, p.Q312_K313insQ Oncogene LOF 28
CEBPA c.912_913insTTG, p.K304_Q305insL Oncogene LOF 24

Other Mutations

Concurrent mutations in NPM1 and FLT3 are seen less frequently in individuals with biallelic CEBPA mutations than in those with no or monoallelic mutations[17]. Conversely, mutations in GATA2 appear to occur more often in CEBPA single- and double-mutants[18]. The prognostic significance of these concomitant mutations is, however, unclear. Biallelic CEBPA mutations appear to confer a positive prognostic effect regardless of concomitant mutations.

Type Gene/Region/Other
Concomitant Mutations NPM1, FLT3, GATA2
Secondary Mutations None
Mutually Exclusive None
End of V4 Section

Epigenomic Alterations

None

Genes and Main Pathways Involved

Put your text here and fill in the table (Instructions: Please include references throughout the table. Do not delete the table.)

Gene; Genetic Alteration Pathway Pathophysiologic Outcome
EXAMPLE: BRAF and MAP2K1; Activating mutations EXAMPLE: MAPK signaling EXAMPLE: Increased cell growth and proliferation
EXAMPLE: CDKN2A; Inactivating mutations EXAMPLE: Cell cycle regulation EXAMPLE: Unregulated cell division
EXAMPLE: KMT2C and ARID1A; Inactivating mutations EXAMPLE: Histone modification, chromatin remodeling EXAMPLE: Abnormal gene expression program
editv4:Genes and Main Pathways Involved
The content below was from the old template. Please incorporate above.

CEBPA, located on chromosome 19 band q13.1, encodes a transcription factor of the basic region leucine zipper (bZIP) family. It is involved in the coordination of myeloid differentiation and cellular growth arrest. Alternative translation initiation sites result in protein isoforms of different lengths.

CEPBA works in a tissue-specific manner to direct cellular differentiation by activating lineage-specific gene promoters. Interactions with the basal transcriptional apparatus (TBP/TFIIB), histone acetylators (CBP/p300), and chromatin-remodelling complexes (SWI/SNF) have all been implicated in lineage-specific gene activation by CEBPA. In the haematopoietic system there appears to be interplay between CEBPA and GATA factors[19]. CEBPA knockout mice show a complete lack of granulocytes while blasts accumulate in the bone marrow, suggesting an early block of myeloid maturation[20]. In the context of haematopoietic differentiation, evidence suggests CEBPA plays a role in regulating the expression of genes encoding growth factor receptors (e.g. granulocyte colony-stimulating factor) and secondary granule proteins (e.g. lactoferrin)[21][22]. It has also been implicated, along with NFI-A, in mediating miR-223 expression[23]. Studies indicate that CEBPA is not required for differentiation of granulocytes beyond the granulocyte-monocyte progenitor (GMP) stage, and that CEBPA controls stem-cell renewal with expression of Bmi-1 elevated in 'CEBPA knockouts[24]. Proliferation arrest also appears to be an important aspect of CEBPA function via interaction with CDK2/CDK4, upregulation of the p21 (WAF-1/CIP-1/SDI-1) protein and the SWI/SNF complex, and inhibition of the E2F complex[25][26][27][28][29]. This E2F inhibition leads to c-myc downregulation, which is required for granulocytic regulation[30]. Mutations in the C-terminal region of CEBPA abrogate CEBPA-E2F complex function[31]. The precise mechanism by which CEBPA mutants inhibit granulocytic differentiation in the context of AML is still unclear.

End of V4 Section

Genetic Diagnostic Testing Methods

Sanger sequencing, Next Generation Sequencing

Familial Forms

Familial mutations of CEBPA have been described in several families[32][33][34]. Typically, these are N-terminal mutations that are later joined by a somatic C-terminal mutation on the opposite allele leading to AML.

Additional Information

Put your text here

Links

CEBPA

References

(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted.)

  1. 1.0 1.1 Arber DA, et al., (2017). Acute myeloid leukaemia with recurrent genetic abnormalities, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. Revised 4th Edition. IARC Press: Lyon, France, p142-144.
  2. Taskesen, Erdogan; et al. (2011-02-24). "Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity". Blood. 117 (8): 2469–2475. doi:10.1182/blood-2010-09-307280. ISSN 1528-0020. PMID 21177436.
  3. Tawana, Kiran; et al. (2015-09-03). "Disease evolution and outcomes in familial AML with germline CEBPA mutations". Blood. 126 (10): 1214–1223. doi:10.1182/blood-2015-05-647172. ISSN 1528-0020. PMID 26162409.
  4. Smith, Matthew L.; et al. (2004-12-02). "Mutation of CEBPA in familial acute myeloid leukemia". The New England Journal of Medicine. 351 (23): 2403–2407. doi:10.1056/NEJMoa041331. ISSN 1533-4406. PMID 15575056.
  5. Sellick, G. S.; et al. (2005-07). "Further evidence that germline CEBPA mutations cause dominant inheritance of acute myeloid leukaemia". Leukemia. 19 (7): 1276–1278. doi:10.1038/sj.leu.2403788. ISSN 0887-6924. PMID 15902292. Check date values in: |date= (help)
  6. Renneville, A.; et al. (2009-04). "Another pedigree with familial acute myeloid leukemia and germline CEBPA mutation". Leukemia. 23 (4): 804–806. doi:10.1038/leu.2008.294. ISSN 1476-5551. PMID 18946494. Check date values in: |date= (help)
  7. Tawana, Kiran; et al. (2015-09-03). "Disease evolution and outcomes in familial AML with germline CEBPA mutations". Blood. 126 (10): 1214–1223. doi:10.1182/blood-2015-05-647172. ISSN 1528-0020. PMID 26162409.
  8. 8.0 8.1 Pabst, Thomas; et al. (2008-11-01). "Somatic CEBPA mutations are a frequent second event in families with germline CEBPA mutations and familial acute myeloid leukemia". Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 26 (31): 5088–5093. doi:10.1200/JCO.2008.16.5563. ISSN 1527-7755. PMID 18768433.
  9. Debeljak, Maruša; et al. (2013-07). "Concordant acute myeloblastic leukemia in monozygotic twins with germline and shared somatic mutations in the gene for CCAAT-enhancer-binding protein α with 13 years difference at onset". Haematologica. 98 (7): e73–74. doi:10.3324/haematol.2012.082578. ISSN 1592-8721. PMC 3696596. PMID 23716546. Check date values in: |date= (help)
  10. 10.0 10.1 Taskesen, Erdogan; et al. (2011-02-24). "Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity". Blood. 117 (8): 2469–2475. doi:10.1182/blood-2010-09-307280. ISSN 1528-0020. PMID 21177436.
  11. Pathak, Anand; et al. (2016-07). "Whole exome sequencing reveals a C-terminal germline variant in CEBPA-associated acute myeloid leukemia: 45-year follow up of a large family". Haematologica. 101 (7): 846–852. doi:10.3324/haematol.2015.130799. ISSN 1592-8721. PMC 5004464. PMID 26721895. Check date values in: |date= (help)
  12. Mendoza, Hadrian; et al. (2021-05). "A case of acute myeloid leukemia with unusual germline CEBPA mutation: lessons learned about mutation detection, location, and penetrance". Leukemia & Lymphoma. 62 (5): 1251–1254. doi:10.1080/10428194.2020.1861276. ISSN 1029-2403. PMID 33345654 Check |pmid= value (help). Check date values in: |date= (help)
  13. 13.0 13.1 Taube, Franziska; et al. (2022-01-06). "CEBPA mutations in 4708 patients with acute myeloid leukemia: differential impact of bZIP and TAD mutations on outcome". Blood. 139 (1): 87–103. doi:10.1182/blood.2020009680. ISSN 1528-0020. PMID 34320176 Check |pmid= value (help).
  14. Pollyea, DA (2025). [NCCN.org "NCCN Clinical Practice Guidelines in Oncology: AML"] Check |url= value (help). NCCN.CS1 maint: display-authors (link)
  15. Tarlock, Katherine; et al. (2021-09-30). "CEBPA-bZip mutations are associated with favorable prognosis in de novo AML: a report from the Children's Oncology Group". Blood. 138 (13): 1137–1147. doi:10.1182/blood.2020009652. ISSN 1528-0020. PMC 8570058 Check |pmc= value (help). PMID 33951732 Check |pmid= value (help).
  16. Wakita, Satoshi; et al. (2022-01-11). "Prognostic impact of CEBPA bZIP domain mutation in acute myeloid leukemia". Blood Advances. 6 (1): 238–247. doi:10.1182/bloodadvances.2021004292. ISSN 2473-9537. PMC 8753195 Check |pmc= value (help). PMID 34448807 Check |pmid= value (help).
  17. Taskesen, Erdogan; et al. (2011). "Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity". Blood. 117 (8): 2469–2475. doi:10.1182/blood-2010-09-307280. ISSN 1528-0020. PMID 21177436.
  18. Green, Claire L.; et al. (2013). "GATA2 mutations in sporadic and familial acute myeloid leukaemia patients with CEBPA mutations". British Journal of Haematology. 161 (5): 701–705. doi:10.1111/bjh.12317. ISSN 1365-2141. PMID 23560626.
  19. McNagny, K. M.; et al. (1998). "Regulation of eosinophil-specific gene expression by a C/EBP-Ets complex and GATA-1". The EMBO journal. 17 (13): 3669–3680. doi:10.1093/emboj/17.13.3669. ISSN 0261-4189. PMC 1170703. PMID 9649437.
  20. Zhang, D. E.; et al. (1997). "Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice". Proceedings of the National Academy of Sciences of the United States of America. 94 (2): 569–574. doi:10.1073/pnas.94.2.569. ISSN 0027-8424. PMC 19554. PMID 9012825.CS1 maint: PMC format (link)
  21. Radomska, H. S.; et al. (1998). "CCAAT/enhancer binding protein alpha is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors". Molecular and Cellular Biology. 18 (7): 4301–4314. doi:10.1128/mcb.18.7.4301. ISSN 0270-7306. PMC 109014. PMID 9632814.CS1 maint: PMC format (link)
  22. Zhang, P.; et al. (1998). "Upregulation of interleukin 6 and granulocyte colony-stimulating factor receptors by transcription factor CCAAT enhancer binding protein alpha (C/EBP alpha) is critical for granulopoiesis". The Journal of Experimental Medicine. 188 (6): 1173–1184. doi:10.1084/jem.188.6.1173. ISSN 0022-1007. PMC 2212540. PMID 9743535.
  23. Fazi, Francesco; et al. (2005). "A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis". Cell. 123 (5): 819–831. doi:10.1016/j.cell.2005.09.023. ISSN 0092-8674. PMID 16325577.
  24. Zhang, Pu; et al. (2004). "Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha". Immunity. 21 (6): 853–863. doi:10.1016/j.immuni.2004.11.006. ISSN 1074-7613. PMID 15589173.
  25. Pedersen, T. A.; et al. (2001). "Cooperation between C/EBPalpha TBP/TFIIB and SWI/SNF recruiting domains is required for adipocyte differentiation". Genes & Development. 15 (23): 3208–3216. doi:10.1101/gad.209901. ISSN 0890-9369. PMC 312836. PMID 11731483.CS1 maint: PMC format (link)
  26. Slomiany, B. A.; et al. (2000). "C/EBPalpha inhibits cell growth via direct repression of E2F-DP-mediated transcription". Molecular and Cellular Biology. 20 (16): 5986–5997. doi:10.1128/mcb.20.16.5986-5997.2000. ISSN 0270-7306. PMC 86075. PMID 10913181.CS1 maint: PMC format (link)
  27. Timchenko, N. A.; et al. (1996). "CCAAT/enhancer-binding protein alpha (C/EBP alpha) inhibits cell proliferation through the p21 (WAF-1/CIP-1/SDI-1) protein". Genes & Development. 10 (7): 804–815. doi:10.1101/gad.10.7.804. ISSN 0890-9369. PMID 8846917.
  28. Wang, H.; et al. (2001). "C/EBPalpha arrests cell proliferation through direct inhibition of Cdk2 and Cdk4". Molecular Cell. 8 (4): 817–828. doi:10.1016/s1097-2765(01)00366-5. ISSN 1097-2765. PMID 11684017.
  29. Wang, Qian-Fei; et al. (2003). "Cell cycle inhibition mediated by the outer surface of the C/EBPalpha basic region is required but not sufficient for granulopoiesis". Oncogene. 22 (17): 2548–2557. doi:10.1038/sj.onc.1206360. ISSN 0950-9232. PMID 12730669.
  30. Johansen, L. M.; et al. (2001). "c-Myc is a critical target for c/EBPalpha in granulopoiesis". Molecular and Cellular Biology. 21 (11): 3789–3806. doi:10.1128/MCB.21.11.3789-3806.2001. ISSN 0270-7306. PMC 87031. PMID 11340171.CS1 maint: PMC format (link)
  31. Porse, B. T.; et al. (2001). "E2F repression by C/EBPalpha is required for adipogenesis and granulopoiesis in vivo". Cell. 107 (2): 247–258. doi:10.1016/s0092-8674(01)00516-5. ISSN 0092-8674. PMID 11672531.
  32. Smith, Matthew L.; et al. (2004). "Mutation of CEBPA in familial acute myeloid leukemia". The New England Journal of Medicine. 351 (23): 2403–2407. doi:10.1056/NEJMoa041331. ISSN 1533-4406. PMID 15575056.
  33. Nanri, Tomoko; et al. (2010). "A family harboring a germ-line N-terminal C/EBPalpha mutation and development of acute myeloid leukemia with an additional somatic C-terminal C/EBPalpha mutation". Genes, Chromosomes & Cancer. 49 (3): 237–241. doi:10.1002/gcc.20734. ISSN 1098-2264. PMID 19953636.
  34. Sellick, G. S.; et al. (2005). "Further evidence that germline CEBPA mutations cause dominant inheritance of acute myeloid leukaemia". Leukemia. 19 (7): 1276–1278. doi:10.1038/sj.leu.2403788. ISSN 0887-6924. PMID 15902292.


Notes

*Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the Associate Editor or other CCGA representative.  When pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author.

Prior Author(s):

Paul Defazio, MSc, Monash Health


*Citation of this Page: “Acute myeloid leukaemia with CEBPA mutation”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 05/17/2025, https://ccga.io/index.php/HAEM5:Acute_myeloid_leukaemia_with_CEBPA_mutation.