HAEM5:Acute promyelocytic leukaemia with PML::RARA fusion: Difference between revisions
| [unchecked revision] | [checked revision] |
Bailey.Glen (talk | contribs) No edit summary |
Bailey.Glen (talk | contribs) No edit summary |
||
| (11 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
{{DISPLAYTITLE:Acute promyelocytic leukaemia with PML::RARA fusion}} | {{DISPLAYTITLE:Acute promyelocytic leukaemia with PML::RARA fusion}} | ||
[[HAEM5:Table_of_Contents|Haematolymphoid Tumours (5th ed.)]] | [[HAEM5:Table_of_Contents|Haematolymphoid Tumours (WHO Classification, 5th ed.)]] | ||
{{Under Construction}} | {{Under Construction}} | ||
<blockquote class= | <blockquote class="blockedit">{{Box-round|title=Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification|This page was converted to the new template on 2023-12-07. The original page can be found at [[HAEM4:Acute Promyelocytic Leukemia (APL) with PML-RARA]]. | ||
}}</blockquote> | }}</blockquote> | ||
<span style="color:#0070C0">(General Instructions – The focus of these pages is the clinically significant genetic alterations in each disease type. This is based on up-to-date knowledge from multiple resources such as PubMed and the WHO classification books. The CCGA is meant to be a supplemental resource to the WHO classification books; the CCGA captures in a continually updated wiki-stye manner the current genetics/genomics knowledge of each disease, which evolves more rapidly than books can be revised and published. If the same disease is described in multiple WHO classification books, the genetics-related information for that disease will be consolidated into a single main page that has this template (other pages would only contain a link to this main page). Use [https://www.genenames.org/ <u>HUGO-approved gene names and symbols</u>] (italicized when appropriate), [https://varnomen.hgvs.org/ <u>HGVS-based nomenclature for variants</u>], as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column in a table, click nearby within the table and select the > symbol that appears. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see </span><u>[[Author_Instructions]]</u><span style="color:#0070C0"> and [[Frequently Asked Questions (FAQs)|<u>FAQs</u>]] as well as contact your [[Leadership|<u>Associate Editor</u>]] or [mailto:CCGA@cancergenomics.org <u>Technical Support</u>].)</span> | |||
==Primary Author(s)*== | ==Primary Author(s)*== | ||
Yiming Zhong, Ph.D., Megan Piazza, Ph.D., and Shashi Shetty, Ph.D. | Yiming Zhong, Ph.D., Megan Piazza, Ph.D., and Shashi Shetty, Ph.D. | ||
==WHO Classification of Disease== | |||
{| class="wikitable" | |||
!Structure | |||
!Disease | |||
|- | |||
|Book | |||
|Haematolymphoid Tumours (5th ed.) | |||
|- | |||
|Category | |||
|Myeloid proliferations and neoplasms | |||
|- | |||
|Family | |||
|Acute myeloid leukaemia | |||
|- | |||
|Type | |||
|Acute myeloid leukaemia with defining genetic abnormalities | |||
|- | |||
|Subtype(s) | |||
|Acute promyelocytic leukaemia with PML::RARA fusion | |||
|} | |||
==Related Terminology== | |||
{| class="wikitable" | {| class="wikitable" | ||
| | |+ | ||
| | |Acceptable | ||
|Acute promyelocytic leukaemia with t(15;17)(q24.1;q21.2); acute promyelocytic leukaemia | |||
|- | |- | ||
| | |Not Recommended | ||
| | |N/A | ||
|} | |} | ||
==Gene Rearrangements== | |||
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span> | |||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
! | !Driver Gene!!Fusion(s) and Common Partner Genes!!Molecular Pathogenesis!!Typical Chromosomal Alteration(s) | ||
!Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease) | |||
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | |||
!Established Clinical Significance Per Guidelines - Yes or No (Source) | |||
!Clinical Relevance Details/Other Notes | |||
|- | |- | ||
| | |<span class="blue-text">EXAMPLE:</span> ''ABL1''||<span class="blue-text">EXAMPLE:</span> ''BCR::ABL1''||<span class="blue-text">EXAMPLE:</span> The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1.||<span class="blue-text">EXAMPLE:</span> t(9;22)(q34;q11.2) | ||
|<span class="blue-text">EXAMPLE:</span> Common (CML) | |||
|<span class="blue-text">EXAMPLE:</span> D, P, T | |||
|<span class="blue-text">EXAMPLE:</span> Yes (WHO, NCCN) | |||
|<span class="blue-text">EXAMPLE:</span> | |||
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference). | |||
|- | |- | ||
| | |<span class="blue-text">EXAMPLE:</span> ''CIC'' | ||
|<span class="blue-text">EXAMPLE:</span> ''CIC::DUX4'' | |||
|<span class="blue-text">EXAMPLE:</span> Typically, the last exon of ''CIC'' is fused to ''DUX4''. The fusion breakpoint in ''CIC'' is usually intra-exonic and removes an inhibitory sequence, upregulating ''PEA3'' genes downstream of ''CIC'' including ''ETV1'', ''ETV4'', and ''ETV5''. | |||
|<span class="blue-text">EXAMPLE:</span> t(4;19)(q25;q13) | |||
|<span class="blue-text">EXAMPLE:</span> Common (CIC-rearranged sarcoma) | |||
|<span class="blue-text">EXAMPLE:</span> D | |||
| | |||
|<span class="blue-text">EXAMPLE:</span> | |||
''DUX4'' has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references). | |||
|- | |- | ||
| | |<span class="blue-text">EXAMPLE:</span> ''ALK'' | ||
|- | |<span class="blue-text">EXAMPLE:</span> ''ELM4::ALK'' | ||
Other fusion partners include ''KIF5B, NPM1, STRN, TFG, TPM3, CLTC, KLC1'' | |||
|<span class="blue-text">EXAMPLE:</span> Fusions result in constitutive activation of the ''ALK'' tyrosine kinase. The most common ''ALK'' fusion is ''EML4::ALK'', with breakpoints in intron 19 of ''ALK''. At the transcript level, a variable (5’) partner gene is fused to 3’ ''ALK'' at exon 20. Rarely, ''ALK'' fusions contain exon 19 due to breakpoints in intron 18. | |||
|<span class="blue-text">EXAMPLE:</span> N/A | |||
|<span class="blue-text">EXAMPLE:</span> Rare (Lung adenocarcinoma) | |||
|<span class="blue-text">EXAMPLE:</span> T | |||
| | |||
|<span class="blue-text">EXAMPLE:</span> | |||
Both balanced and unbalanced forms are observed by FISH (add references). | |||
|- | |- | ||
|<span class="blue-text">EXAMPLE:</span> ''ABL1'' | |||
|<span class="blue-text">EXAMPLE:</span> N/A | |||
|<span class="blue-text">EXAMPLE:</span> Intragenic deletion of exons 2–7 in ''EGFR'' removes the ligand-binding domain, resulting in a constitutively active tyrosine kinase with downstream activation of multiple oncogenic pathways. | |||
|<span class="blue-text">EXAMPLE:</span> N/A | |||
|<span class="blue-text">EXAMPLE:</span> Recurrent (IDH-wildtype Glioblastoma) | |||
|<span class="blue-text">EXAMPLE:</span> D, P, T | |||
| | |||
| | |||
|- | |- | ||
| | | | ||
| | |||
| | | | ||
| | | | ||
| | | | ||
| | | | ||
| | |||
| | |||
|} | |||
<blockquote class="blockedit">{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}}</blockquote> | |||
This AML subtype is classified based on the presence of a PML-RARA fusion, which results from fusion of the 5’ portion of PML at 15q24.1 and the 3’ portion of RARA at 17q21.1<ref>{{Cite journal|last=de Thé|first=H.|last2=Chomienne|first2=C.|last3=Lanotte|first3=M.|last4=Degos|first4=L.|last5=Dejean|first5=A.|date=1990|title=The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus|url=https://www.ncbi.nlm.nih.gov/pubmed/2170850|journal=Nature|volume=347|issue=6293|pages=558–561|doi=10.1038/347558a0|issn=0028-0836|pmid=2170850}}</ref>. 5'PML-3'RARA transcript is expressed in all cases, and 5'RARA-3'PML transcript is found in 2/3 of cases<ref>{{Cite journal|last=Warrell|first=R. P.|last2=de Thé|first2=H.|last3=Wang|first3=Z. Y.|last4=Degos|first4=L.|date=1993|title=Acute promyelocytic leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/8515790|journal=The New England Journal of Medicine|volume=329|issue=3|pages=177–189|doi=10.1056/NEJM199307153290307|issn=0028-4793|pmid=8515790}}</ref>. Rare cases of APL have cryptic t(15;17)(q24.1;q21.1) such as submicroscopic insertion of RARA into PML leading to the expression of the PML-RARA transcript or three way translocations involving chromosomes 15 and 17 with an additional chromosome<ref name=":1">{{Cite journal|last=Grimwade|first=D.|last2=Gorman|first2=P.|last3=Duprez|first3=E.|last4=Howe|first4=K.|last5=Langabeer|first5=S.|last6=Oliver|first6=F.|last7=Walker|first7=H.|last8=Culligan|first8=D.|last9=Waters|first9=J.|date=1997|title=Characterization of cryptic rearrangements and variant translocations in acute promyelocytic leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/9389704|journal=Blood|volume=90|issue=12|pages=4876–4885|issn=0006-4971|pmid=9389704}}</ref>. Several variant translocations involving RARA have also been identified, including t(11;17) and t(5;17)<ref name=":1" />. The 4th edition revision to the World Health Organization renamed APL with t(15;17)(q24.1;q21.1) as APL with PML-RARA<ref name=":0">Arber DA, et al., (2017). Acute myeloid leukaemia with recurrent genetic abnormalities, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. Revised 4th Edition. IARC Press: Lyon, France, p134-136.</ref><ref>{{Cite journal|last=Arber|first=Daniel A.|last2=Orazi|first2=Attilio|last3=Hasserjian|first3=Robert|last4=Thiele|first4=Jürgen|last5=Borowitz|first5=Michael J.|last6=Le Beau|first6=Michelle M.|last7=Bloomfield|first7=Clara D.|last8=Cazzola|first8=Mario|last9=Vardiman|first9=James W.|date=2016|title=The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/27069254|journal=Blood|volume=127|issue=20|pages=2391–2405|doi=10.1182/blood-2016-03-643544|issn=1528-0020|pmid=27069254}}</ref>. | |||
<blockquote class= | |||
This AML subtype is classified based on the presence of a PML-RARA fusion, which results from fusion of the 5’ portion of PML at 15q24.1 and the 3’ portion of RARA at 17q21.1<ref>{{Cite journal|last=de Thé|first=H.|last2=Chomienne|first2=C.|last3=Lanotte|first3=M.|last4=Degos|first4=L.|last5=Dejean|first5=A.|date=1990|title=The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus|url=https://www.ncbi.nlm.nih.gov/pubmed/2170850|journal=Nature|volume=347|issue=6293|pages=558–561|doi=10.1038/347558a0|issn=0028-0836|pmid=2170850}}</ref>. 5'PML-3'RARA transcript is expressed in all cases, and 5'RARA-3'PML transcript is found in 2/3 of cases<ref>{{Cite journal|last=Warrell|first=R. P.|last2=de Thé|first2=H.|last3=Wang|first3=Z. Y.|last4=Degos|first4=L.|date=1993|title=Acute promyelocytic leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/8515790|journal=The New England Journal of Medicine|volume=329|issue=3|pages=177–189|doi=10.1056/NEJM199307153290307|issn=0028-4793|pmid=8515790}}</ref>. Rare cases of APL have cryptic t(15;17)(q24.1;q21.1) such as submicroscopic insertion of RARA into PML leading to the expression of the PML-RARA transcript or three way translocations involving chromosomes 15 and 17 with an additional chromosome<ref name=":1">{{Cite journal|last=Grimwade|first=D.|last2=Gorman|first2=P.|last3=Duprez|first3=E.|last4=Howe|first4=K.|last5=Langabeer|first5=S.|last6=Oliver|first6=F.|last7=Walker|first7=H.|last8=Culligan|first8=D.|last9=Waters|first9=J.|date=1997|title=Characterization of cryptic rearrangements and variant translocations in acute promyelocytic leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/9389704|journal=Blood|volume=90|issue=12|pages=4876–4885|issn=0006-4971|pmid=9389704}}</ref>. Several variant translocations involving RARA have also been identified, including t(11;17) and t(5;17)<ref name=":1" />. The 4th edition revision to the World Health Organization renamed APL with t(15;17)(q24.1;q21.1) as APL with PML-RARA<ref name=":0" /><ref>{{Cite journal|last=Arber|first=Daniel A.|last2=Orazi|first2=Attilio|last3=Hasserjian|first3=Robert|last4=Thiele|first4=Jürgen|last5=Borowitz|first5=Michael J.|last6=Le Beau|first6=Michelle M.|last7=Bloomfield|first7=Clara D.|last8=Cazzola|first8=Mario|last9=Vardiman|first9=James W.|date=2016|title=The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/27069254|journal=Blood|volume=127|issue=20|pages=2391–2405|doi=10.1182/blood-2016-03-643544|issn=1528-0020|pmid=27069254}}</ref>. | |||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
| Line 115: | Line 118: | ||
|} | |} | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
<blockquote class= | <blockquote class="blockedit">{{Box-round|title=v4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).|Please incorporate this section into the relevant tables found in: | ||
* Chromosomal Rearrangements (Gene Fusions) | * Chromosomal Rearrangements (Gene Fusions) | ||
* Individual Region Genomic Gain/Loss/LOH | * Individual Region Genomic Gain/Loss/LOH | ||
* Characteristic Chromosomal Patterns | * Characteristic Chromosomal Patterns | ||
* Gene Mutations (SNV/INDEL)}} | * Gene Mutations (SNV/INDEL)}}</blockquote> | ||
APL can be differentiated from other types of AML based on microscopic examination of the blood, bone marrow, or biopsy as well as detection of the PML/RARA fusion gene. The prognosis in APL treated with all-trans retinoic acid (ATRA) and arsenic trioxide is favorable, and relapsed or refractory APL cases show a generally good response with arsenic trioxide therapy<ref>{{Cite journal|date=2016|title=Huang ME, Ye YC, Chen SR, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 1988;72(2):567-572|url=https://www.ncbi.nlm.nih.gov/pubmed/28034863|journal=Blood|volume=128|issue=26|pages=3017|doi=10.1182/blood-2016-11-750182|issn=1528-0020|pmid=28034863}}</ref><ref>{{Cite journal|last=de Thé|first=Hugues|last2=Pandolfi|first2=Pier Paolo|last3=Chen|first3=Zhu|date=2017|title=Acute Promyelocytic Leukemia: A Paradigm for Oncoprotein-Targeted Cure|url=https://www.ncbi.nlm.nih.gov/pubmed/29136503|journal=Cancer Cell|volume=32|issue=5|pages=552–560|doi=10.1016/j.ccell.2017.10.002|issn=1878-3686|pmid=29136503}}</ref>. Expression of CD56 is associated with poor prognosis, while the prognostic significance of FLT3 -ITD mutations remains unclear<ref>{{Cite journal|last=Ferrara|first=F.|last2=Morabito|first2=F.|last3=Martino|first3=B.|last4=Specchia|first4=G.|last5=Liso|first5=V.|last6=Nobile|first6=F.|last7=Boccuni|first7=P.|last8=Di Noto|first8=R.|last9=Pane|first9=F.|date=2000|title=CD56 expression is an indicator of poor clinical outcome in patients with acute promyelocytic leukemia treated with simultaneous all-trans-retinoic acid and chemotherapy|url=https://www.ncbi.nlm.nih.gov/pubmed/10715300|journal=Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology|volume=18|issue=6|pages=1295–1300|doi=10.1200/JCO.2000.18.6.1295|issn=0732-183X|pmid=10715300}}</ref><ref>{{Cite journal|last=Schnittger|first=Susanne|last2=Bacher|first2=Ulrike|last3=Haferlach|first3=Claudia|last4=Kern|first4=Wolfgang|last5=Alpermann|first5=Tamara|last6=Haferlach|first6=Torsten|date=2011|title=Clinical impact of FLT3 mutation load in acute promyelocytic leukemia with t(15;17)/PML-RARA|url=https://www.ncbi.nlm.nih.gov/pubmed/21859732|journal=Haematologica|volume=96|issue=12|pages=1799–1807|doi=10.3324/haematol.2011.049007|issn=1592-8721|pmc=3232262|pmid=21859732}}</ref>. | APL can be differentiated from other types of AML based on microscopic examination of the blood, bone marrow, or biopsy as well as detection of the PML/RARA fusion gene. The prognosis in APL treated with all-trans retinoic acid (ATRA) and arsenic trioxide is favorable, and relapsed or refractory APL cases show a generally good response with arsenic trioxide therapy<ref>{{Cite journal|date=2016|title=Huang ME, Ye YC, Chen SR, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 1988;72(2):567-572|url=https://www.ncbi.nlm.nih.gov/pubmed/28034863|journal=Blood|volume=128|issue=26|pages=3017|doi=10.1182/blood-2016-11-750182|issn=1528-0020|pmid=28034863}}</ref><ref>{{Cite journal|last=de Thé|first=Hugues|last2=Pandolfi|first2=Pier Paolo|last3=Chen|first3=Zhu|date=2017|title=Acute Promyelocytic Leukemia: A Paradigm for Oncoprotein-Targeted Cure|url=https://www.ncbi.nlm.nih.gov/pubmed/29136503|journal=Cancer Cell|volume=32|issue=5|pages=552–560|doi=10.1016/j.ccell.2017.10.002|issn=1878-3686|pmid=29136503}}</ref>. Expression of CD56 is associated with poor prognosis, while the prognostic significance of FLT3 -ITD mutations remains unclear<ref>{{Cite journal|last=Ferrara|first=F.|last2=Morabito|first2=F.|last3=Martino|first3=B.|last4=Specchia|first4=G.|last5=Liso|first5=V.|last6=Nobile|first6=F.|last7=Boccuni|first7=P.|last8=Di Noto|first8=R.|last9=Pane|first9=F.|date=2000|title=CD56 expression is an indicator of poor clinical outcome in patients with acute promyelocytic leukemia treated with simultaneous all-trans-retinoic acid and chemotherapy|url=https://www.ncbi.nlm.nih.gov/pubmed/10715300|journal=Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology|volume=18|issue=6|pages=1295–1300|doi=10.1200/JCO.2000.18.6.1295|issn=0732-183X|pmid=10715300}}</ref><ref>{{Cite journal|last=Schnittger|first=Susanne|last2=Bacher|first2=Ulrike|last3=Haferlach|first3=Claudia|last4=Kern|first4=Wolfgang|last5=Alpermann|first5=Tamara|last6=Haferlach|first6=Torsten|date=2011|title=Clinical impact of FLT3 mutation load in acute promyelocytic leukemia with t(15;17)/PML-RARA|url=https://www.ncbi.nlm.nih.gov/pubmed/21859732|journal=Haematologica|volume=96|issue=12|pages=1799–1807|doi=10.3324/haematol.2011.049007|issn=1592-8721|pmc=3232262|pmid=21859732}}</ref>. | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
==Individual Region Genomic Gain / Loss / LOH== | ==Individual Region Genomic Gain/Loss/LOH== | ||
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene rearrangements. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Can refer to CGC workgroup tables as linked on the homepage if applicable. Please include references throughout the table. Do not delete the table.'') </span> | |||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
!Chr #!!Gain | !Chr #!!Gain, Loss, Amp, LOH!!Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size]!!Relevant Gene(s) | ||
!Diagnostic | !Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | ||
!Established Clinical Significance Per Guidelines - Yes or No (Source) | |||
! | !Clinical Relevance Details/Other Notes | ||
!Notes | |||
|- | |- | ||
|EXAMPLE | |<span class="blue-text">EXAMPLE:</span> | ||
7 | 7 | ||
|EXAMPLE Loss | |<span class="blue-text">EXAMPLE:</span> Loss | ||
|EXAMPLE | |<span class="blue-text">EXAMPLE:</span> | ||
chr7 | chr7 | ||
| | |<span class="blue-text">EXAMPLE:</span> | ||
| | Unknown | ||
|No | |<span class="blue-text">EXAMPLE:</span> D, P | ||
|EXAMPLE | |<span class="blue-text">EXAMPLE:</span> No | ||
|<span class="blue-text">EXAMPLE:</span> | |||
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add | Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add references). | ||
|- | |- | ||
|EXAMPLE | |<span class="blue-text">EXAMPLE:</span> | ||
8 | 8 | ||
|EXAMPLE Gain | |<span class="blue-text">EXAMPLE:</span> Gain | ||
|EXAMPLE | |<span class="blue-text">EXAMPLE:</span> | ||
chr8 | chr8 | ||
| | |<span class="blue-text">EXAMPLE:</span> | ||
| | Unknown | ||
| | |<span class="blue-text">EXAMPLE:</span> D, P | ||
|EXAMPLE | | | ||
|<span class="blue-text">EXAMPLE:</span> | |||
Common recurrent secondary finding for t(8;21) (add | Common recurrent secondary finding for t(8;21) (add references). | ||
|- | |||
|<span class="blue-text">EXAMPLE:</span> | |||
17 | |||
|<span class="blue-text">EXAMPLE:</span> Amp | |||
|<span class="blue-text">EXAMPLE:</span> | |||
17q12; chr17:39,700,064-39,728,658 [hg38; 28.6 kb] | |||
|<span class="blue-text">EXAMPLE:</span> | |||
''ERBB2'' | |||
|<span class="blue-text">EXAMPLE:</span> D, P, T | |||
| | |||
|<span class="blue-text">EXAMPLE:</span> | |||
Amplification of ''ERBB2'' is associated with HER2 overexpression in HER2 positive breast cancer (add references). Add criteria for how amplification is defined. | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|} | |} | ||
<blockquote class= | <blockquote class="blockedit">{{Box-round|title=v4:Genomic Gain/Loss/LOH|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
Not applicable | Not applicable | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
==Characteristic Chromosomal Patterns== | ==Characteristic Chromosomal or Other Global Mutational Patterns== | ||
Put your text here and fill in the table <span style="color:#0070C0">(I''nstructions: Included in this category are alterations such as hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis; microsatellite instability; homologous recombination deficiency; mutational signature pattern; etc. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span> | |||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
!Chromosomal Pattern | !Chromosomal Pattern | ||
! | !Molecular Pathogenesis | ||
!Prognostic Significance | !Prevalence - | ||
! | Common >20%, Recurrent 5-20% or Rare <5% (Disease) | ||
!Notes | !Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | ||
!Established Clinical Significance Per Guidelines - Yes or No (Source) | |||
!Clinical Relevance Details/Other Notes | |||
|- | |- | ||
|EXAMPLE | |<span class="blue-text">EXAMPLE:</span> | ||
Co-deletion of 1p and 18q | Co-deletion of 1p and 18q | ||
| | |<span class="blue-text">EXAMPLE:</span> See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). | ||
|<span class="blue-text">EXAMPLE:</span> Common (Oligodendroglioma) | |||
|<span class="blue-text">EXAMPLE:</span> D, P | |||
| | |||
| | |||
See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). | |- | ||
|<span class="blue-text">EXAMPLE:</span> | |||
Microsatellite instability - hypermutated | |||
| | |||
|<span class="blue-text">EXAMPLE:</span> Common (Endometrial carcinoma) | |||
|<span class="blue-text">EXAMPLE:</span> P, T | |||
| | |||
| | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|} | |} | ||
<blockquote class= | <blockquote class="blockedit">{{Box-round|title=v4:Characteristic Chromosomal Aberrations / Patterns|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
Not applicable | Not applicable | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
==Gene Mutations (SNV / INDEL)== | ==Gene Mutations (SNV/INDEL)== | ||
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent or common as well either disease defining and/or clinically significant. If a gene has multiple mechanisms depending on the type or site of the alteration, add multiple entries in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Details on clinical significance such as prognosis and other important information such as concomitant and mutually exclusive mutations can be provided in the notes section. Please include references throughout the table. Do not delete the table.'') </span> | |||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
!Gene | !Gene!!Genetic Alteration!!Tumor Suppressor Gene, Oncogene, Other!!Prevalence - | ||
! | Common >20%, Recurrent 5-20% or Rare <5% (Disease) | ||
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | |||
! | !Established Clinical Significance Per Guidelines - Yes or No (Source) | ||
!Notes | !Clinical Relevance Details/Other Notes | ||
|- | |- | ||
|EXAMPLE: | |<span class="blue-text">EXAMPLE:</span>''EGFR'' | ||
EXAMPLE: | <br /> | ||
|<span class="blue-text">EXAMPLE:</span> Exon 18-21 activating mutations | |||
|<span class="blue-text">EXAMPLE:</span> Oncogene | |||
|<span class="blue-text">EXAMPLE:</span> Common (lung cancer) | |||
EXAMPLE: | |<span class="blue-text">EXAMPLE:</span> T | ||
|EXAMPLE: | |<span class="blue-text">EXAMPLE:</span> Yes (NCCN) | ||
|EXAMPLE: | |<span class="blue-text">EXAMPLE:</span> Exons 18, 19, and 21 mutations are targetable for therapy. Exon 20 T790M variants cause resistance to first generation TKI therapy and are targetable by second and third generation TKIs (add references). | ||
|- | |||
EXAMPLE: | |<span class="blue-text">EXAMPLE:</span> ''TP53''; Variable LOF mutations | ||
|EXAMPLE: | <br /> | ||
|EXAMPLE: | |<span class="blue-text">EXAMPLE:</span> Variable LOF mutations | ||
|<span class="blue-text">EXAMPLE:</span> Tumor Supressor Gene | |||
|<span class="blue-text">EXAMPLE:</span> Common (breast cancer) | |||
|<span class="blue-text">EXAMPLE:</span> P | |||
| | |||
|<span class="blue-text">EXAMPLE:</span> >90% are somatic; rare germline alterations associated with Li-Fraumeni syndrome (add reference). Denotes a poor prognosis in breast cancer. | |||
|- | |||
|<span class="blue-text">EXAMPLE:</span> ''BRAF''; Activating mutations | |||
|<span class="blue-text">EXAMPLE:</span> Activating mutations | |||
|<span class="blue-text">EXAMPLE:</span> Oncogene | |||
|<span class="blue-text">EXAMPLE:</span> Common (melanoma) | |||
|<span class="blue-text">EXAMPLE:</span> T | |||
| | |||
| | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
| | | | ||
| | | | ||
| | | | ||
|}Note: A more extensive list of mutations can be found in [https://www.cbioportal.org/ <u>cBioportal</u>], [https://cancer.sanger.ac.uk/cosmic <u>COSMIC</u>], and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content. | |||
|} | |||
Note: A more extensive list of mutations can be found in | |||
<blockquote class="blockedit">{{Box-round|title=v4:Gene Mutations (SNV/INDEL)|The content below was from the old template. Please incorporate above.}}</blockquote> | |||
<blockquote class= | |||
There is not specific information on mutations related to this subtype of AML at this time. | There is not specific information on mutations related to this subtype of AML at this time. | ||
===Other Mutations=== | ===Other Mutations=== | ||
| Line 254: | Line 307: | ||
|} | |} | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
==Epigenomic Alterations== | ==Epigenomic Alterations== | ||
| Line 261: | Line 317: | ||
==Genes and Main Pathways Involved== | ==Genes and Main Pathways Involved== | ||
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: | |||
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Please include references throughout the table. Do not delete the table.)''</span> | |||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome | !Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome | ||
|- | |- | ||
|EXAMPLE: BRAF and MAP2K1; Activating mutations | |<span class="blue-text">EXAMPLE:</span> ''BRAF'' and ''MAP2K1''; Activating mutations | ||
|EXAMPLE: MAPK signaling | |<span class="blue-text">EXAMPLE:</span> MAPK signaling | ||
|EXAMPLE: Increased cell growth and proliferation | |<span class="blue-text">EXAMPLE:</span> Increased cell growth and proliferation | ||
|- | |- | ||
|EXAMPLE: CDKN2A; Inactivating mutations | |<span class="blue-text">EXAMPLE:</span> ''CDKN2A''; Inactivating mutations | ||
|EXAMPLE: Cell cycle regulation | |<span class="blue-text">EXAMPLE:</span> Cell cycle regulation | ||
|EXAMPLE: Unregulated cell division | |<span class="blue-text">EXAMPLE:</span> Unregulated cell division | ||
|- | |- | ||
|EXAMPLE: | |<span class="blue-text">EXAMPLE:</span> ''KMT2C'' and ''ARID1A''; Inactivating mutations | ||
|EXAMPLE: | |<span class="blue-text">EXAMPLE:</span> Histone modification, chromatin remodeling | ||
|EXAMPLE: | |<span class="blue-text">EXAMPLE:</span> Abnormal gene expression program | ||
|- | |||
| | |||
| | |||
| | |||
|} | |} | ||
<blockquote class= | <blockquote class="blockedit">{{Box-round|title=v4:Genes and Main Pathways Involved|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
The protein encoded by the PML (promyelocytic leukemia) gene is a member of the tripartite motif (TRIM) family and it functions as a transcription factor and tumor suppressor. PML is the core component of subnuclear structures called PML nuclear bodies (PML-NBs) and it interacts with a large number of proteins including p53 and has been implicated in several cellular functions such as cellular senescence, apoptosis, and hematopoietic stem cell maintenance<ref>{{Cite journal|last=Pearson|first=M.|last2=Carbone|first2=R.|last3=Sebastiani|first3=C.|last4=Cioce|first4=M.|last5=Fagioli|first5=M.|last6=Saito|first6=S.|last7=Higashimoto|first7=Y.|last8=Appella|first8=E.|last9=Minucci|first9=S.|date=2000|title=PML regulates p53 acetylation and premature senescence induced by oncogenic Ras|url=https://www.ncbi.nlm.nih.gov/pubmed/10910364|journal=Nature|volume=406|issue=6792|pages=207–210|doi=10.1038/35018127|issn=0028-0836|pmid=10910364}}</ref><ref>{{Cite journal|last=Bernardi|first=Rosa|last2=Pandolfi|first2=Pier Paolo|date=2007|title=Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies|url=https://www.ncbi.nlm.nih.gov/pubmed/17928811|journal=Nature Reviews. Molecular Cell Biology|volume=8|issue=12|pages=1006–1016|doi=10.1038/nrm2277|issn=1471-0080|pmid=17928811}}</ref>. The gene RARA (Retinoic acid receptor, alpha) encodes a nuclear retinoic acid receptor which regulates transcription in a ligand-dependent manner<ref>{{Cite journal|last=Melnick|first=A.|last2=Licht|first2=J. D.|date=1999|title=Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/10233871|journal=Blood|volume=93|issue=10|pages=3167–3215|issn=0006-4971|pmid=10233871}}</ref>. The fusion of PML and RARA results in expression of a hybrid protein with altered functions. This fusion protein deregulates transcriptional control such as RAR targets and disrupts PML nuclear bodies<ref>{{Cite journal|last=de Thé|first=Hugues|last2=Chen|first2=Zhu|date=2010|title=Acute promyelocytic leukaemia: novel insights into the mechanisms of cure|url=https://www.ncbi.nlm.nih.gov/pubmed/20966922|journal=Nature Reviews. Cancer|volume=10|issue=11|pages=775–783|doi=10.1038/nrc2943|issn=1474-1768|pmid=20966922}}</ref>. | The protein encoded by the PML (promyelocytic leukemia) gene is a member of the tripartite motif (TRIM) family and it functions as a transcription factor and tumor suppressor. PML is the core component of subnuclear structures called PML nuclear bodies (PML-NBs) and it interacts with a large number of proteins including p53 and has been implicated in several cellular functions such as cellular senescence, apoptosis, and hematopoietic stem cell maintenance<ref>{{Cite journal|last=Pearson|first=M.|last2=Carbone|first2=R.|last3=Sebastiani|first3=C.|last4=Cioce|first4=M.|last5=Fagioli|first5=M.|last6=Saito|first6=S.|last7=Higashimoto|first7=Y.|last8=Appella|first8=E.|last9=Minucci|first9=S.|date=2000|title=PML regulates p53 acetylation and premature senescence induced by oncogenic Ras|url=https://www.ncbi.nlm.nih.gov/pubmed/10910364|journal=Nature|volume=406|issue=6792|pages=207–210|doi=10.1038/35018127|issn=0028-0836|pmid=10910364}}</ref><ref>{{Cite journal|last=Bernardi|first=Rosa|last2=Pandolfi|first2=Pier Paolo|date=2007|title=Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies|url=https://www.ncbi.nlm.nih.gov/pubmed/17928811|journal=Nature Reviews. Molecular Cell Biology|volume=8|issue=12|pages=1006–1016|doi=10.1038/nrm2277|issn=1471-0080|pmid=17928811}}</ref>. The gene RARA (Retinoic acid receptor, alpha) encodes a nuclear retinoic acid receptor which regulates transcription in a ligand-dependent manner<ref>{{Cite journal|last=Melnick|first=A.|last2=Licht|first2=J. D.|date=1999|title=Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/10233871|journal=Blood|volume=93|issue=10|pages=3167–3215|issn=0006-4971|pmid=10233871}}</ref>. The fusion of PML and RARA results in expression of a hybrid protein with altered functions. This fusion protein deregulates transcriptional control such as RAR targets and disrupts PML nuclear bodies<ref>{{Cite journal|last=de Thé|first=Hugues|last2=Chen|first2=Zhu|date=2010|title=Acute promyelocytic leukaemia: novel insights into the mechanisms of cure|url=https://www.ncbi.nlm.nih.gov/pubmed/20966922|journal=Nature Reviews. Cancer|volume=10|issue=11|pages=775–783|doi=10.1038/nrc2943|issn=1474-1768|pmid=20966922}}</ref>. | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
==Genetic Diagnostic Testing Methods== | ==Genetic Diagnostic Testing Methods== | ||
| Line 301: | Line 365: | ||
==References== | ==References== | ||
(use the "Cite" icon at the top of the page) <span style="color:#0070C0">(''Instructions: Add each reference into the text above by clicking | (use the "Cite" icon at the top of the page) <span style="color:#0070C0">(''Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted''</span><span style="color:#0070C0">''.''</span><span style="color:#0070C0">)</span> <references /> | ||
<br /> | |||
==Notes== | ==Notes== | ||
<nowiki>*</nowiki>Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA | <nowiki>*</nowiki>Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the [[Leadership|''<u>Associate Editor</u>'']] or other CCGA representative. When pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author. | ||
Prior Author(s): | |||
<nowiki>*</nowiki>''Citation of this Page'': “Acute promyelocytic leukaemia with PML::RARA fusion”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:Acute_promyelocytic_leukaemia_with_PML::RARA_fusion</nowiki>. | <nowiki>*</nowiki>''Citation of this Page'': “Acute promyelocytic leukaemia with PML::RARA fusion”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:Acute_promyelocytic_leukaemia_with_PML::RARA_fusion</nowiki>. | ||
[[Category:HAEM5]][[Category:DISEASE]][[Category:Diseases A]] | [[Category:HAEM5]] | ||
[[Category:DISEASE]] | |||
[[Category:Diseases A]] | |||