HAEM5:B lymphoblastic leukaemia/lymphoma with ETV6::RUNX1 fusion: Difference between revisions

From Compendium of Cancer Genome Aberrations
Jump to navigation Jump to search
[checked revision][checked revision]
No edit summary
No edit summary
 
(7 intermediate revisions by the same user not shown)
Line 4: Line 4:
{{Under Construction}}
{{Under Construction}}


<blockquote class='blockedit'>{{Box-round|title=Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification|This page was converted to the new template on 2023-12-07. The original page can be found at [[HAEM4:B-Lymphoblastic Leukemia/Lymphoma with t(12;21)(p13.2;q22.1); ETV6-RUNX1]].
<blockquote class="blockedit">{{Box-round|title=Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification|This page was converted to the new template on 2023-12-07. The original page can be found at [[HAEM4:B-Lymphoblastic Leukemia/Lymphoma with t(12;21)(p13.2;q22.1); ETV6-RUNX1]].
}}</blockquote>
}}</blockquote>


<span style="color:#0070C0">(General Instructions – The main focus of these pages is the clinically significant genetic alterations in each disease type. Use [https://www.genenames.org/ <u>HUGO-approved gene names and symbols</u>] (italicized when appropriate), [https://varnomen.hgvs.org/ HGVS-based nomenclature for variants], as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column to a table, click within the table and select the > symbol that appears to be given options. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see </span><u>[[Author_Instructions]]</u><span style="color:#0070C0"> and [[Frequently Asked Questions (FAQs)|<u>FAQs</u>]] as well as contact your [[Leadership|<u>Associate Editor</u>]] or [mailto:CCGA@cancergenomics.org <u>Technical Support</u>])</span>
<span style="color:#0070C0">(General Instructions – The focus of these pages is the clinically significant genetic alterations in each disease type. This is based on up-to-date knowledge from multiple resources such as PubMed and the WHO classification books. The CCGA is meant to be a supplemental resource to the WHO classification books; the CCGA captures in a continually updated wiki-stye manner the current genetics/genomics knowledge of each disease, which evolves more rapidly than books can be revised and published. If the same disease is described in multiple WHO classification books, the genetics-related information for that disease will be consolidated into a single main page that has this template (other pages would only contain a link to this main page). Use [https://www.genenames.org/ <u>HUGO-approved gene names and symbols</u>] (italicized when appropriate), [https://varnomen.hgvs.org/ <u>HGVS-based nomenclature for variants</u>], as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column in a table, click nearby within the table and select the > symbol that appears. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see </span><u>[[Author_Instructions]]</u><span style="color:#0070C0"> and [[Frequently Asked Questions (FAQs)|<u>FAQs</u>]] as well as contact your [[Leadership|<u>Associate Editor</u>]] or [mailto:CCGA@cancergenomics.org <u>Technical Support</u>].)</span>


==Primary Author(s)*==
==Primary Author(s)*==
Line 14: Line 14:


Cancer Category/Type
Cancer Category/Type
__TOC__
B-Lymphoblastic Leukemia/Lymphoma  
B-Lymphoblastic Leukemia/Lymphoma  


==Cancer Category / Type==
==WHO Classification of Disease==


Put your text here
{| class="wikitable"
 
!Structure
==Cancer Sub-Classification / Subtype==
!Disease
 
|-
B-Lymphoblastic Leukemia/Lymphoma with t(12;21)(p13.2;q22.1); ETV6-RUNX1
|Book
 
|Haematolymphoid Tumours (5th ed.)
==Definition / Description of Disease==
|-
 
|Category
*20 - 30% of childhood preB ALL; most common translocation (Chin Med J (Engl) 2003;116:1298) but not infants; also 3% of adult
|B-cell lymphoid proliferations and lymphomas
*Excellent prognosis due to good response to chemotherapy; 90% remissions; relapses occur later than other ALL
|-
 
|Family
Mihova D. B lymphoblastic leukemia / lymphoma with t(12;21)(p13;q22); TEL-AML1 (ETV6-RUNX1). PathologyOutlines.com website. <nowiki>http://www.pathologyoutlines.com/topic/leukemiapreBALLt1221.html</nowiki>. Accessed June 14th, 2020.
|Precursor B-cell neoplasms
 
|-
==Synonyms / Terminology==
|Type
 
|B-lymphoblastic leukaemias/lymphomas
B- Lymphoblastic Leukemia (B-ALL) is also known as Precursor B-Cell Lymphoblastic Leukemia, B-Cell...The t(12;21)(p13.2;q22.2) results in the in-frame fusion of the amino terminus of ''ETV6'' (formally known as ''TEL'' ) with all known functional domains of ''RUNX1'' (formally known as ''AML1)''
|-
 
|Subtype(s)
==Epidemiology / Prevalence==
|B lymphoblastic leukaemia/lymphoma with ETV6::RUNX1 fusion
 
|}
The t(12;21)(p13.2;q22.2) resulting in the ''ETV6-RUNX1'' fusion is the most common chromosomal rearrangement in pediatric B-ALL present in ~25% of patients diagnosed between the ages of 2 and 10 years. The t(12;21) is less prevalent in adult B-ALL with an estimated incidence of ~3%


==Clinical Features==
==Related Terminology==


Put your text here and fill in the table <span style="color:#0070C0">(''Instruction: Can include references in the table. Do not delete table.'') </span>
{| class="wikitable"
{| class="wikitable"
|'''Signs and Symptoms'''
|+
|<span class="blue-text">EXAMPLE:</span> Asymptomatic (incidental finding on complete blood counts)
|Acceptable
 
|N/A
<span class="blue-text">EXAMPLE:</span> B-symptoms (weight loss, fever, night sweats)
 
<span class="blue-text">EXAMPLE:</span> Fatigue
 
<span class="blue-text">EXAMPLE:</span> Lymphadenopathy (uncommon)
|-
|-
|'''Laboratory Findings'''
|Not Recommended
|<span class="blue-text">EXAMPLE:</span> Cytopenias
|B-lymphoblastic leukaemia/lymphoma with t(12;21)(p13;q22); TEL-AML1 (ETV6-RUNX1)
 
<span class="blue-text">EXAMPLE:</span> Lymphocytosis (low level)
|}
|}


==Gene Rearrangements==


<blockquote class='blockedit'>{{Box-round|title=v4:Clinical Features|The content below was from the old template. Please incorporate above.}}
The presence of ''ETV6-RUNX1'' alters differentiation and enhances self renewal of hematopoietic progenitor cells, particularly of B-lineage. The expression of ''ETV6-RUNX1'' in human cord blood progenitor cells reportedly caused the expansion of a candidate pre-leukemic population that had a growth advantage in the presence of transforming growth factor-β
</blockquote>
==Sites of Involvement==
bone marrow 
==Morphologic Features==
No distinct morphologic features
==Immunophenotype==


Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span>
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
!Finding!!Marker
!Driver Gene!!Fusion(s) and Common Partner Genes!!Molecular Pathogenesis!!Typical Chromosomal Alteration(s)
!Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease)
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T
!Established Clinical Significance Per Guidelines - Yes or No (Source)
!Clinical Relevance Details/Other Notes
|-
|-
|Positive (universal)||CD10, CD19, CD34
|<span class="blue-text">EXAMPLE:</span> ''ABL1''||<span class="blue-text">EXAMPLE:</span> ''BCR::ABL1''||<span class="blue-text">EXAMPLE:</span> The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1.||<span class="blue-text">EXAMPLE:</span> t(9;22)(q34;q11.2)
|<span class="blue-text">EXAMPLE:</span> Common (CML)
|<span class="blue-text">EXAMPLE:</span> D, P, T
|<span class="blue-text">EXAMPLE:</span> Yes (WHO, NCCN)
|<span class="blue-text">EXAMPLE:</span>
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference).
|-
|-
|Positive (subset)||CD3, CD33
|<span class="blue-text">EXAMPLE:</span> ''CIC''
|-
|<span class="blue-text">EXAMPLE:</span> ''CIC::DUX4''
|Negative (universal)||CD9
|<span class="blue-text">EXAMPLE:</span> Typically, the last exon of ''CIC'' is fused to ''DUX4''. The fusion breakpoint in ''CIC'' is usually intra-exonic and removes an inhibitory sequence, upregulating ''PEA3'' genes downstream of ''CIC'' including ''ETV1'', ''ETV4'', and ''ETV5''.
|<span class="blue-text">EXAMPLE:</span> t(4;19)(q25;q13)
|<span class="blue-text">EXAMPLE:</span> Common (CIC-rearranged sarcoma)
|<span class="blue-text">EXAMPLE:</span> D
|
|<span class="blue-text">EXAMPLE:</span>
 
''DUX4'' has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references).
|-
|-
|Negative (subset)||CD20
|<span class="blue-text">EXAMPLE:</span> ''ALK''
|}
|<span class="blue-text">EXAMPLE:</span> ''ELM4::ALK''


==Chromosomal Rearrangements (Gene Fusions)==


Put your text here and fill in the table
Other fusion partners include ''KIF5B, NPM1, STRN, TFG, TPM3, CLTC, KLC1''
|<span class="blue-text">EXAMPLE:</span> Fusions result in constitutive activation of the ''ALK'' tyrosine kinase. The most common ''ALK'' fusion is ''EML4::ALK'', with breakpoints in intron 19 of ''ALK''. At the transcript level, a variable (5’) partner gene is fused to 3’ ''ALK'' at exon 20. Rarely, ''ALK'' fusions contain exon 19 due to breakpoints in intron 18.
|<span class="blue-text">EXAMPLE:</span> N/A
|<span class="blue-text">EXAMPLE:</span> Rare (Lung adenocarcinoma)
|<span class="blue-text">EXAMPLE:</span> T
|
|<span class="blue-text">EXAMPLE:</span>


{| class="wikitable sortable"
Both balanced and unbalanced forms are observed by FISH (add references).
|-
|-
!Chromosomal Rearrangement!!Genes in Fusion (5’ or 3’ Segments)!!Pathogenic Derivative!!Prevalence
|<span class="blue-text">EXAMPLE:</span> ''ABL1''
!Diagnostic Significance (Yes, No or Unknown)
|<span class="blue-text">EXAMPLE:</span> N/A
!Prognostic Significance (Yes, No or Unknown)
|<span class="blue-text">EXAMPLE:</span> Intragenic deletion of exons 2–7 in ''EGFR'' removes the ligand-binding domain, resulting in a constitutively active tyrosine kinase with downstream activation of multiple oncogenic pathways.
!Therapeutic Significance (Yes, No or Unknown)
|<span class="blue-text">EXAMPLE:</span> N/A
!Notes
|<span class="blue-text">EXAMPLE:</span> Recurrent (IDH-wildtype Glioblastoma)
|<span class="blue-text">EXAMPLE:</span> D, P, T
|
|
|-
|-
|<span class="blue-text">EXAMPLE:</span> t(9;22)(q34;q11.2)||<span class="blue-text">EXAMPLE:</span> 3'ABL1 / 5'BCR||<span class="blue-text">EXAMPLE:</span> der(22)||<span class="blue-text">EXAMPLE:</span> 20% (COSMIC)
|
<span class="blue-text">EXAMPLE:</span> 30% (add reference)
|
|Yes
|
|No
|
|Yes
|
|<span class="blue-text">EXAMPLE:</span>
|
 
|
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference).
|
|}
|}


<blockquote class='blockedit'>{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}}
<blockquote class="blockedit">{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}}</blockquote>


{| class="wikitable sortable"
{| class="wikitable sortable"
Line 123: Line 122:
|}
|}
<blockquote class="blockedit">
<center><span style="color:Maroon">'''End of V4 Section'''</span>
----
</blockquote>
</blockquote>




<blockquote class='blockedit'>{{Box-round|title=v4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).|Please incorporate this section into the relevant tables found in:
<blockquote class="blockedit">{{Box-round|title=v4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).|Please incorporate this section into the relevant tables found in:
* Chromosomal Rearrangements (Gene Fusions)
* Chromosomal Rearrangements (Gene Fusions)
* Individual Region Genomic Gain/Loss/LOH
* Individual Region Genomic Gain/Loss/LOH
* Characteristic Chromosomal Patterns
* Characteristic Chromosomal Patterns
* Gene Mutations (SNV/INDEL)}}
* Gene Mutations (SNV/INDEL)}}</blockquote>


''ETV6-RUNX1''-positive ALL cells have distinct biologic features and are reported to have an increased ''in vitro'' sensitivity to anti-leukemic drugs such as L-asparaginase, doxorubicin, etoposide and dexamethasone compared with leukemic cells of other cytogenetic subtypes. The presence of ''ETV6-RUNX1'' has been associated with a relatively low rate of relapse in multiple studies.Moreover, relapses tend to occur late and have a better salvage rate than other ALL subtypes. A COG (Children's Oncology Group) study indicated that the presence of ''ETV6-RUNX1'' was an independent predictor of favorable outcome.However, in a study from the (DFCI) Dana Farber Cancer Institute Consortium, ''ETV6-RUNX1'' status was not an independent prognostic factor after accounting for age, initial leukocyte count and treatment group.Thus, it is not clear whether the ''ETV6-RUNX1'' fusion has independent prognostic significance in the context of current risk-adapted therapy and whether the outcome of children with ''ETV6-RUNX1''-positive ALL can be further improved by contemporary therapeutic strategies.  
''ETV6-RUNX1''-positive ALL cells have distinct biologic features and are reported to have an increased ''in vitro'' sensitivity to anti-leukemic drugs such as L-asparaginase, doxorubicin, etoposide and dexamethasone compared with leukemic cells of other cytogenetic subtypes. The presence of ''ETV6-RUNX1'' has been associated with a relatively low rate of relapse in multiple studies.Moreover, relapses tend to occur late and have a better salvage rate than other ALL subtypes. A COG (Children's Oncology Group) study indicated that the presence of ''ETV6-RUNX1'' was an independent predictor of favorable outcome.However, in a study from the (DFCI) Dana Farber Cancer Institute Consortium, ''ETV6-RUNX1'' status was not an independent prognostic factor after accounting for age, initial leukocyte count and treatment group.Thus, it is not clear whether the ''ETV6-RUNX1'' fusion has independent prognostic significance in the context of current risk-adapted therapy and whether the outcome of children with ''ETV6-RUNX1''-positive ALL can be further improved by contemporary therapeutic strategies.  


<blockquote class="blockedit">
<center><span style="color:Maroon">'''End of V4 Section'''</span>
----
</blockquote>
</blockquote>
==Individual Region Genomic Gain / Loss / LOH==
==Individual Region Genomic Gain/Loss/LOH==


Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable. Do not delete table.'') </span>


Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene rearrangements. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Can refer to CGC workgroup tables as linked on the homepage if applicable. Please include references throughout the table. Do not delete the table.'') </span>
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
!Chr #!!Gain / Loss / Amp / LOH!!Minimal Region Genomic Coordinates [Genome Build]!!Minimal Region Cytoband
!Chr #!!Gain, Loss, Amp, LOH!!Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size]!!Relevant Gene(s)
!Diagnostic Significance (Yes, No or Unknown)
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T
!Prognostic Significance (Yes, No or Unknown)
!Established Clinical Significance Per Guidelines - Yes or No (Source)
!Therapeutic Significance (Yes, No or Unknown)
!Clinical Relevance Details/Other Notes
!Notes
|-
|-
|<span class="blue-text">EXAMPLE:</span>
|<span class="blue-text">EXAMPLE:</span>
7
7
|<span class="blue-text">EXAMPLE:</span> Loss
|<span class="blue-text">EXAMPLE:</span> Loss
|<span class="blue-text">EXAMPLE:</span>
|<span class="blue-text">EXAMPLE:</span>
 
chr7
chr7:1- 159,335,973 [hg38]
|<span class="blue-text">EXAMPLE:</span>
|<span class="blue-text">EXAMPLE:</span>
 
Unknown
chr7
|<span class="blue-text">EXAMPLE:</span> D, P
|Yes
|<span class="blue-text">EXAMPLE:</span> No
|Yes
|No
|<span class="blue-text">EXAMPLE:</span>
|<span class="blue-text">EXAMPLE:</span>
 
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add references).
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference).
|-
|-
|<span class="blue-text">EXAMPLE:</span>
|<span class="blue-text">EXAMPLE:</span>
8
8
|<span class="blue-text">EXAMPLE:</span> Gain
|<span class="blue-text">EXAMPLE:</span> Gain
|<span class="blue-text">EXAMPLE:</span>
|<span class="blue-text">EXAMPLE:</span>
 
chr8
chr8:1-145,138,636 [hg38]
|<span class="blue-text">EXAMPLE:</span>
Unknown
|<span class="blue-text">EXAMPLE:</span> D, P
|
|<span class="blue-text">EXAMPLE:</span>
Common recurrent secondary finding for t(8;21) (add references).
|-
|<span class="blue-text">EXAMPLE:</span>
17
|<span class="blue-text">EXAMPLE:</span> Amp
|<span class="blue-text">EXAMPLE:</span>
17q12; chr17:39,700,064-39,728,658 [hg38; 28.6 kb]
|<span class="blue-text">EXAMPLE:</span>
|<span class="blue-text">EXAMPLE:</span>
 
''ERBB2''
chr8
|<span class="blue-text">EXAMPLE:</span> D, P, T
|No
|
|No
|No
|<span class="blue-text">EXAMPLE:</span>
|<span class="blue-text">EXAMPLE:</span>
 
Amplification of ''ERBB2'' is associated with HER2 overexpression in HER2 positive breast cancer (add references). Add criteria for how amplification is defined.
Common recurrent secondary finding for t(8;21) (add reference).
|-
|
|
|
|
|
|
|
|}
|}


<blockquote class='blockedit'>{{Box-round|title=v4:Genomic Gain/Loss/LOH|The content below was from the old template. Please incorporate above.}}
<blockquote class="blockedit">{{Box-round|title=v4:Genomic Gain/Loss/LOH|The content below was from the old template. Please incorporate above.}}</blockquote>


The 12p13 deletion is the most common accompanying abnormality found in approximately 40% of cases resulting in the loss of ''ETV6'' on the chromosome not involved in the rearrangement. In addition, deletion of the ''CDKN2A/B'' locus on 9p21 or the ''PAX5'' gene at 9p13 can be both seen in about a quarter of patients [29–32] . These abnormalities, as well as loss of 6q and gain of chromosome 16, are thought to be among the earliest genomic aberrations in t(12;21) positive B-ALL  
The 12p13 deletion is the most common accompanying abnormality found in approximately 40% of cases resulting in the loss of ''ETV6'' on the chromosome not involved in the rearrangement. In addition, deletion of the ''CDKN2A/B'' locus on 9p21 or the ''PAX5'' gene at 9p13 can be both seen in about a quarter of patients [29–32] . These abnormalities, as well as loss of 6q and gain of chromosome 16, are thought to be among the earliest genomic aberrations in t(12;21) positive B-ALL  
Line 195: Line 209:
|}
|}
<blockquote class="blockedit">
<center><span style="color:Maroon">'''End of V4 Section'''</span>
----
</blockquote>
</blockquote>
==Characteristic Chromosomal Patterns==
==Characteristic Chromosomal or Other Global Mutational Patterns==


Put your text here <span style="color:#0070C0">(''EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis. Do not delete table.'')</span>


Put your text here and fill in the table <span style="color:#0070C0">(I''nstructions: Included in this category are alterations such as hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis; microsatellite instability; homologous recombination deficiency; mutational signature pattern; etc. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span>
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
!Chromosomal Pattern
!Chromosomal Pattern
!Diagnostic Significance (Yes, No or Unknown)
!Molecular Pathogenesis
!Prognostic Significance (Yes, No or Unknown)
!Prevalence -
!Therapeutic Significance (Yes, No or Unknown)
Common >20%, Recurrent 5-20% or Rare <5% (Disease)
!Notes
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T
!Established Clinical Significance Per Guidelines - Yes or No (Source)
!Clinical Relevance Details/Other Notes
|-
|-
|<span class="blue-text">EXAMPLE:</span>
|<span class="blue-text">EXAMPLE:</span>
Co-deletion of 1p and 18q
Co-deletion of 1p and 18q
|Yes
|<span class="blue-text">EXAMPLE:</span> See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).
|No
|<span class="blue-text">EXAMPLE:</span> Common (Oligodendroglioma)
|No
|<span class="blue-text">EXAMPLE:</span> D, P
|
|
|-
|<span class="blue-text">EXAMPLE:</span>
|<span class="blue-text">EXAMPLE:</span>
 
Microsatellite instability - hypermutated
See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).
|
|<span class="blue-text">EXAMPLE:</span> Common (Endometrial carcinoma)
|<span class="blue-text">EXAMPLE:</span> P, T
|
|
|-
|
|
|
|
|
|
|}
|}
==Gene Mutations (SNV / INDEL)==
==Gene Mutations (SNV/INDEL)==


Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well as either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable. Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Do not delete table.'') </span>


Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent or common as well either disease defining and/or clinically significant. If a gene has multiple mechanisms depending on the type or site of the alteration, add multiple entries in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Details on clinical significance such as prognosis and other important information such as concomitant and mutually exclusive mutations can be provided in the notes section. Please include references throughout the table. Do not delete the table.'') </span>
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
!Gene; Genetic Alteration!!'''Presumed Mechanism (Tumor Suppressor Gene [TSG] / Oncogene / Other)'''!!'''Prevalence (COSMIC /  TCGA / Other)'''!!'''Concomitant Mutations'''!!'''Mutually Exclusive Mutations'''
!Gene!!Genetic Alteration!!Tumor Suppressor Gene, Oncogene, Other!!Prevalence -
!'''Diagnostic Significance (Yes, No or Unknown)'''
Common >20%, Recurrent 5-20% or Rare <5% (Disease)
!Prognostic Significance (Yes, No or Unknown)
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T  
!Therapeutic Significance (Yes, No or Unknown)
!Established Clinical Significance Per Guidelines - Yes or No (Source)
!Notes
!Clinical Relevance Details/Other Notes
|-
|-
|<span class="blue-text">EXAMPLE:</span> TP53; Variable LOF mutations
|<span class="blue-text">EXAMPLE:</span>''EGFR''


<span class="blue-text">EXAMPLE:</span>
<br />
 
|<span class="blue-text">EXAMPLE:</span> Exon 18-21 activating mutations
EGFR; Exon 20 mutations
|<span class="blue-text">EXAMPLE:</span> Oncogene
 
|<span class="blue-text">EXAMPLE:</span> Common (lung cancer)
<span class="blue-text">EXAMPLE:</span> BRAF; Activating mutations
|<span class="blue-text">EXAMPLE:</span> T
|<span class="blue-text">EXAMPLE:</span> TSG
|<span class="blue-text">EXAMPLE:</span> Yes (NCCN)
|<span class="blue-text">EXAMPLE:</span> 20% (COSMIC)
|<span class="blue-text">EXAMPLE:</span> Exons 18, 19, and 21 mutations are targetable for therapy. Exon 20 T790M variants cause resistance to first generation TKI therapy and are targetable by second and third generation TKIs (add references).
 
|-
<span class="blue-text">EXAMPLE:</span> 30% (add Reference)
|<span class="blue-text">EXAMPLE:</span> ''TP53''; Variable LOF mutations
|<span class="blue-text">EXAMPLE:</span> IDH1 R123H
<br />
|<span class="blue-text">EXAMPLE:</span> EGFR amplification
|<span class="blue-text">EXAMPLE:</span> Variable LOF mutations
|<span class="blue-text">EXAMPLE:</span> Tumor Supressor Gene
|<span class="blue-text">EXAMPLE:</span> Common (breast cancer)
|<span class="blue-text">EXAMPLE:</span> P
|
|<span class="blue-text">EXAMPLE:</span> >90% are somatic; rare germline alterations associated with Li-Fraumeni syndrome (add reference). Denotes a poor prognosis in breast cancer.
|-
|<span class="blue-text">EXAMPLE:</span> ''BRAF''; Activating mutations
|<span class="blue-text">EXAMPLE:</span> Activating mutations
|<span class="blue-text">EXAMPLE:</span> Oncogene
|<span class="blue-text">EXAMPLE:</span> Common (melanoma)
|<span class="blue-text">EXAMPLE:</span> T
|
|
|-
|
|
|
|
|
|
|
|
|
|
|<span class="blue-text">EXAMPLE:</span>  Excludes hairy cell leukemia (HCL) (add reference).
|}Note: A more extensive list of mutations can be found in [https://www.cbioportal.org/ <u>cBioportal</u>], [https://cancer.sanger.ac.uk/cosmic <u>COSMIC</u>], and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
<br />
==Epigenomic Alterations==
|}
Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.


==Epigenomic Alterations==


Put your text here
Put your text here
==Genes and Main Pathways Involved==


==Genes and Main Pathways Involved==


Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Can include references in the table. Do not delete table.'')</span>
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Please include references throughout the table. Do not delete the table.)''</span>
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome
|-
|-
|<span class="blue-text">EXAMPLE:</span> BRAF and MAP2K1; Activating mutations
|<span class="blue-text">EXAMPLE:</span> ''BRAF'' and ''MAP2K1''; Activating mutations
|<span class="blue-text">EXAMPLE:</span> MAPK signaling
|<span class="blue-text">EXAMPLE:</span> MAPK signaling
|<span class="blue-text">EXAMPLE:</span> Increased cell growth and proliferation
|<span class="blue-text">EXAMPLE:</span> Increased cell growth and proliferation
|-
|-
|<span class="blue-text">EXAMPLE:</span> CDKN2A; Inactivating mutations
|<span class="blue-text">EXAMPLE:</span> ''CDKN2A''; Inactivating mutations
|<span class="blue-text">EXAMPLE:</span> Cell cycle regulation
|<span class="blue-text">EXAMPLE:</span> Cell cycle regulation
|<span class="blue-text">EXAMPLE:</span> Unregulated cell division
|<span class="blue-text">EXAMPLE:</span> Unregulated cell division
|-
|-
|<span class="blue-text">EXAMPLE:</span>  KMT2C and ARID1A; Inactivating mutations
|<span class="blue-text">EXAMPLE:</span> ''KMT2C'' and ''ARID1A''; Inactivating mutations
|<span class="blue-text">EXAMPLE:</span>  Histone modification, chromatin remodeling
|<span class="blue-text">EXAMPLE:</span> Histone modification, chromatin remodeling
|<span class="blue-text">EXAMPLE:</span>  Abnormal gene expression program
|<span class="blue-text">EXAMPLE:</span> Abnormal gene expression program
|-
|
|
|
|}
|}
==Genetic Diagnostic Testing Methods==
==Genetic Diagnostic Testing Methods==
Line 294: Line 345:


==References==
==References==
(use the "Cite" icon at the top of the page) <span style="color:#0070C0">(''Instructions: Add each reference into the text above by clicking on where you want to insert the reference, selecting the “Cite” icon at the top of the page, and using the “Automatic” tab option to search such as by PMID to select the reference to insert. The reference list in this section will be automatically generated and sorted.''</span> <span style="color:#0070C0">''If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference''</span><span style="color:#0070C0">''.''</span><span style="color:#0070C0">) </span> <references />
(use the "Cite" icon at the top of the page) <span style="color:#0070C0">(''Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted''</span><span style="color:#0070C0">''.''</span><span style="color:#0070C0">)</span> <references />


'''
<br />


==Notes==
==Notes==
<nowiki>*</nowiki>Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage)Additional global feedback or concerns are also welcome.
<nowiki>*</nowiki>Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the [[Leadership|''<u>Associate Editor</u>'']] or other CCGA representativeWhen pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author.
 
Prior Author(s): 
 
       
<nowiki>*</nowiki>''Citation of this Page'': “B lymphoblastic leukaemia/lymphoma with ETV6::RUNX1 fusion”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:B_lymphoblastic_leukaemia/lymphoma_with_ETV6::RUNX1_fusion</nowiki>.
<nowiki>*</nowiki>''Citation of this Page'': “B lymphoblastic leukaemia/lymphoma with ETV6::RUNX1 fusion”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:B_lymphoblastic_leukaemia/lymphoma_with_ETV6::RUNX1_fusion</nowiki>.
[[Category:HAEM5]][[Category:DISEASE]][[Category:Diseases B]]
[[Category:HAEM5]]
[[Category:DISEASE]]
[[Category:Diseases B]]

Latest revision as of 12:10, 3 July 2025

Haematolymphoid Tumours (WHO Classification, 5th ed.)

editContent Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification
This page was converted to the new template on 2023-12-07. The original page can be found at HAEM4:B-Lymphoblastic Leukemia/Lymphoma with t(12;21)(p13.2;q22.1); ETV6-RUNX1.

(General Instructions – The focus of these pages is the clinically significant genetic alterations in each disease type. This is based on up-to-date knowledge from multiple resources such as PubMed and the WHO classification books. The CCGA is meant to be a supplemental resource to the WHO classification books; the CCGA captures in a continually updated wiki-stye manner the current genetics/genomics knowledge of each disease, which evolves more rapidly than books can be revised and published. If the same disease is described in multiple WHO classification books, the genetics-related information for that disease will be consolidated into a single main page that has this template (other pages would only contain a link to this main page). Use HUGO-approved gene names and symbols (italicized when appropriate), HGVS-based nomenclature for variants, as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column in a table, click nearby within the table and select the > symbol that appears. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see Author_Instructions and FAQs as well as contact your Associate Editor or Technical Support.)

Primary Author(s)*

Marilena Melas, PhD; Yassmine Akkari, PhD, FACMG

Cancer Category/Type B-Lymphoblastic Leukemia/Lymphoma

WHO Classification of Disease

Structure Disease
Book Haematolymphoid Tumours (5th ed.)
Category B-cell lymphoid proliferations and lymphomas
Family Precursor B-cell neoplasms
Type B-lymphoblastic leukaemias/lymphomas
Subtype(s) B lymphoblastic leukaemia/lymphoma with ETV6::RUNX1 fusion

Related Terminology

Acceptable N/A
Not Recommended B-lymphoblastic leukaemia/lymphoma with t(12;21)(p13;q22); TEL-AML1 (ETV6-RUNX1)

Gene Rearrangements

Put your text here and fill in the table (Instructions: Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.)

Driver Gene Fusion(s) and Common Partner Genes Molecular Pathogenesis Typical Chromosomal Alteration(s) Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease) Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE: ABL1 EXAMPLE: BCR::ABL1 EXAMPLE: The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1. EXAMPLE: t(9;22)(q34;q11.2) EXAMPLE: Common (CML) EXAMPLE: D, P, T EXAMPLE: Yes (WHO, NCCN) EXAMPLE:

The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference).

EXAMPLE: CIC EXAMPLE: CIC::DUX4 EXAMPLE: Typically, the last exon of CIC is fused to DUX4. The fusion breakpoint in CIC is usually intra-exonic and removes an inhibitory sequence, upregulating PEA3 genes downstream of CIC including ETV1, ETV4, and ETV5. EXAMPLE: t(4;19)(q25;q13) EXAMPLE: Common (CIC-rearranged sarcoma) EXAMPLE: D EXAMPLE:

DUX4 has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references).

EXAMPLE: ALK EXAMPLE: ELM4::ALK


Other fusion partners include KIF5B, NPM1, STRN, TFG, TPM3, CLTC, KLC1

EXAMPLE: Fusions result in constitutive activation of the ALK tyrosine kinase. The most common ALK fusion is EML4::ALK, with breakpoints in intron 19 of ALK. At the transcript level, a variable (5’) partner gene is fused to 3’ ALK at exon 20. Rarely, ALK fusions contain exon 19 due to breakpoints in intron 18. EXAMPLE: N/A EXAMPLE: Rare (Lung adenocarcinoma) EXAMPLE: T EXAMPLE:

Both balanced and unbalanced forms are observed by FISH (add references).

EXAMPLE: ABL1 EXAMPLE: N/A EXAMPLE: Intragenic deletion of exons 2–7 in EGFR removes the ligand-binding domain, resulting in a constitutively active tyrosine kinase with downstream activation of multiple oncogenic pathways. EXAMPLE: N/A EXAMPLE: Recurrent (IDH-wildtype Glioblastoma) EXAMPLE: D, P, T
editv4:Chromosomal Rearrangements (Gene Fusions)
The content below was from the old template. Please incorporate above.
Chromosomal Rearrangement Genes in Fusion (5’ or 3’ Segments) Pathogenic Derivative Prevalence
t(12;21)(p13.2;q22.1) ETV6-RUNX1 der(21)t(12;21) 25% of B-ALL cases
End of V4 Section


editv4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).
Please incorporate this section into the relevant tables found in:
  • Chromosomal Rearrangements (Gene Fusions)
  • Individual Region Genomic Gain/Loss/LOH
  • Characteristic Chromosomal Patterns
  • Gene Mutations (SNV/INDEL)

ETV6-RUNX1-positive ALL cells have distinct biologic features and are reported to have an increased in vitro sensitivity to anti-leukemic drugs such as L-asparaginase, doxorubicin, etoposide and dexamethasone compared with leukemic cells of other cytogenetic subtypes. The presence of ETV6-RUNX1 has been associated with a relatively low rate of relapse in multiple studies.Moreover, relapses tend to occur late and have a better salvage rate than other ALL subtypes. A COG (Children's Oncology Group) study indicated that the presence of ETV6-RUNX1 was an independent predictor of favorable outcome.However, in a study from the (DFCI) Dana Farber Cancer Institute Consortium, ETV6-RUNX1 status was not an independent prognostic factor after accounting for age, initial leukocyte count and treatment group.Thus, it is not clear whether the ETV6-RUNX1 fusion has independent prognostic significance in the context of current risk-adapted therapy and whether the outcome of children with ETV6-RUNX1-positive ALL can be further improved by contemporary therapeutic strategies.

End of V4 Section

Individual Region Genomic Gain/Loss/LOH

Put your text here and fill in the table (Instructions: Includes aberrations not involving gene rearrangements. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Can refer to CGC workgroup tables as linked on the homepage if applicable. Please include references throughout the table. Do not delete the table.)

Chr # Gain, Loss, Amp, LOH Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size] Relevant Gene(s) Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE:

7

EXAMPLE: Loss EXAMPLE:

chr7

EXAMPLE:

Unknown

EXAMPLE: D, P EXAMPLE: No EXAMPLE:

Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add references).

EXAMPLE:

8

EXAMPLE: Gain EXAMPLE:

chr8

EXAMPLE:

Unknown

EXAMPLE: D, P EXAMPLE:

Common recurrent secondary finding for t(8;21) (add references).

EXAMPLE:

17

EXAMPLE: Amp EXAMPLE:

17q12; chr17:39,700,064-39,728,658 [hg38; 28.6 kb]

EXAMPLE:

ERBB2

EXAMPLE: D, P, T EXAMPLE:

Amplification of ERBB2 is associated with HER2 overexpression in HER2 positive breast cancer (add references). Add criteria for how amplification is defined.

editv4:Genomic Gain/Loss/LOH
The content below was from the old template. Please incorporate above.

The 12p13 deletion is the most common accompanying abnormality found in approximately 40% of cases resulting in the loss of ETV6 on the chromosome not involved in the rearrangement. In addition, deletion of the CDKN2A/B locus on 9p21 or the PAX5 gene at 9p13 can be both seen in about a quarter of patients [29–32] . These abnormalities, as well as loss of 6q and gain of chromosome 16, are thought to be among the earliest genomic aberrations in t(12;21) positive B-ALL

Chromosome Number Gain/Loss/Amp/LOH Region
EXAMPLE: 8 EXAMPLE: Gain EXAMPLE: chr8:0-1000000
EXAMPLE: 7 EXAMPLE: Loss EXAMPLE: chr7:0-1000000
End of V4 Section

Characteristic Chromosomal or Other Global Mutational Patterns

Put your text here and fill in the table (Instructions: Included in this category are alterations such as hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis; microsatellite instability; homologous recombination deficiency; mutational signature pattern; etc. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.)

Chromosomal Pattern Molecular Pathogenesis Prevalence -

Common >20%, Recurrent 5-20% or Rare <5% (Disease)

Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE:

Co-deletion of 1p and 18q

EXAMPLE: See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). EXAMPLE: Common (Oligodendroglioma) EXAMPLE: D, P
EXAMPLE:

Microsatellite instability - hypermutated

EXAMPLE: Common (Endometrial carcinoma) EXAMPLE: P, T

Gene Mutations (SNV/INDEL)

Put your text here and fill in the table (Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent or common as well either disease defining and/or clinically significant. If a gene has multiple mechanisms depending on the type or site of the alteration, add multiple entries in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Details on clinical significance such as prognosis and other important information such as concomitant and mutually exclusive mutations can be provided in the notes section. Please include references throughout the table. Do not delete the table.)

Gene Genetic Alteration Tumor Suppressor Gene, Oncogene, Other Prevalence -

Common >20%, Recurrent 5-20% or Rare <5% (Disease)

Diagnostic, Prognostic, and Therapeutic Significance - D, P, T   Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE:EGFR


EXAMPLE: Exon 18-21 activating mutations EXAMPLE: Oncogene EXAMPLE: Common (lung cancer) EXAMPLE: T EXAMPLE: Yes (NCCN) EXAMPLE: Exons 18, 19, and 21 mutations are targetable for therapy. Exon 20 T790M variants cause resistance to first generation TKI therapy and are targetable by second and third generation TKIs (add references).
EXAMPLE: TP53; Variable LOF mutations


EXAMPLE: Variable LOF mutations EXAMPLE: Tumor Supressor Gene EXAMPLE: Common (breast cancer) EXAMPLE: P EXAMPLE: >90% are somatic; rare germline alterations associated with Li-Fraumeni syndrome (add reference). Denotes a poor prognosis in breast cancer.
EXAMPLE: BRAF; Activating mutations EXAMPLE: Activating mutations EXAMPLE: Oncogene EXAMPLE: Common (melanoma) EXAMPLE: T

Note: A more extensive list of mutations can be found in cBioportal, COSMIC, and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.

Epigenomic Alterations

Put your text here

Genes and Main Pathways Involved

Put your text here and fill in the table (Instructions: Please include references throughout the table. Do not delete the table.)

Gene; Genetic Alteration Pathway Pathophysiologic Outcome
EXAMPLE: BRAF and MAP2K1; Activating mutations EXAMPLE: MAPK signaling EXAMPLE: Increased cell growth and proliferation
EXAMPLE: CDKN2A; Inactivating mutations EXAMPLE: Cell cycle regulation EXAMPLE: Unregulated cell division
EXAMPLE: KMT2C and ARID1A; Inactivating mutations EXAMPLE: Histone modification, chromatin remodeling EXAMPLE: Abnormal gene expression program

Genetic Diagnostic Testing Methods

FISH (dual and extra signal), RT-PCR. Since this translocation is cryptic, conventional chromosome analysis would not detect it.

Familial Forms

Family predisposition ?

Additional Information

Put your text here

Links

ETV6

RUNX1

Put your links here (use "Link" icon at top of page)

References

(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted.)


Notes

*Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the Associate Editor or other CCGA representative.  When pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author.

Prior Author(s):


*Citation of this Page: “B lymphoblastic leukaemia/lymphoma with ETV6::RUNX1 fusion”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 07/3/2025, https://ccga.io/index.php/HAEM5:B_lymphoblastic_leukaemia/lymphoma_with_ETV6::RUNX1_fusion.