HAEM5:T-prolymphocytic leukaemia: Difference between revisions
| [checked revision] | [checked revision] |
Bailey.Glen (talk | contribs) No edit summary |
Bailey.Glen (talk | contribs) No edit summary |
||
| (9 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
{{DISPLAYTITLE:T-prolymphocytic leukaemia}} | {{DISPLAYTITLE:T-prolymphocytic leukaemia}} | ||
[[HAEM5:Table_of_Contents|Haematolymphoid Tumours (WHO Classification, 5th ed.)]] | [[HAEM5:Table_of_Contents|Haematolymphoid Tumours (WHO Classification, 5th ed.)]] | ||
==Primary Author(s)*== | ==Primary Author(s)*== | ||
| Line 26: | Line 25: | ||
| | | | ||
|} | |} | ||
== | ==Related Terminology== | ||
{| class="wikitable" | {| class="wikitable" | ||
| | |+ | ||
| | |Acceptable | ||
|N/A | |||
|- | |- | ||
| | |Not Recommended | ||
| | |N/A | ||
|} | |} | ||
==Gene Rearrangements== | |||
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span> | |||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
! | !Driver Gene!!Fusion(s) and Common Partner Genes!!Molecular Pathogenesis!!Typical Chromosomal Alteration(s) | ||
!Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease) | |||
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | |||
!Established Clinical Significance Per Guidelines - Yes or No (Source) | |||
!Clinical Relevance Details/Other Notes | |||
|- | |- | ||
| | |<span class="blue-text">EXAMPLE:</span> ''ABL1''||<span class="blue-text">EXAMPLE:</span> ''BCR::ABL1''||<span class="blue-text">EXAMPLE:</span> The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1.||<span class="blue-text">EXAMPLE:</span> t(9;22)(q34;q11.2) | ||
|<span class="blue-text">EXAMPLE:</span> Common (CML) | |||
|<span class="blue-text">EXAMPLE:</span> D, P, T | |||
|<span class="blue-text">EXAMPLE:</span> Yes (WHO, NCCN) | |||
|<span class="blue-text">EXAMPLE:</span> | |||
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference). | |||
|- | |- | ||
| | |<span class="blue-text">EXAMPLE:</span> ''CIC'' | ||
|<span class="blue-text">EXAMPLE:</span> ''CIC::DUX4'' | |||
|<span class="blue-text">EXAMPLE:</span> Typically, the last exon of ''CIC'' is fused to ''DUX4''. The fusion breakpoint in ''CIC'' is usually intra-exonic and removes an inhibitory sequence, upregulating ''PEA3'' genes downstream of ''CIC'' including ''ETV1'', ''ETV4'', and ''ETV5''. | |||
|<span class="blue-text">EXAMPLE:</span> t(4;19)(q25;q13) | |||
|<span class="blue-text">EXAMPLE:</span> Common (CIC-rearranged sarcoma) | |||
|<span class="blue-text">EXAMPLE:</span> D | |||
| | |||
|<span class="blue-text">EXAMPLE:</span> | |||
''DUX4'' has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references). | |||
|- | |- | ||
| | |<span class="blue-text">EXAMPLE:</span> ''ALK'' | ||
|<span class="blue-text">EXAMPLE:</span> ''ELM4::ALK'' | |||
Other fusion partners include ''KIF5B, NPM1, STRN, TFG, TPM3, CLTC, KLC1'' | |||
|<span class="blue-text">EXAMPLE:</span> Fusions result in constitutive activation of the ''ALK'' tyrosine kinase. The most common ''ALK'' fusion is ''EML4::ALK'', with breakpoints in intron 19 of ''ALK''. At the transcript level, a variable (5’) partner gene is fused to 3’ ''ALK'' at exon 20. Rarely, ''ALK'' fusions contain exon 19 due to breakpoints in intron 18. | |||
|<span class="blue-text">EXAMPLE:</span> N/A | |||
|<span class="blue-text">EXAMPLE:</span> Rare (Lung adenocarcinoma) | |||
|<span class="blue-text">EXAMPLE:</span> T | |||
| | |||
|<span class="blue-text">EXAMPLE:</span> | |||
Both balanced and unbalanced forms are observed by FISH (add references). | |||
|- | |- | ||
| | |<span class="blue-text">EXAMPLE:</span> ''ABL1'' | ||
| | |<span class="blue-text">EXAMPLE:</span> N/A | ||
|<span class="blue-text">EXAMPLE:</span> Intragenic deletion of exons 2–7 in ''EGFR'' removes the ligand-binding domain, resulting in a constitutively active tyrosine kinase with downstream activation of multiple oncogenic pathways. | |||
<span | |<span class="blue-text">EXAMPLE:</span> N/A | ||
|<span class="blue-text">EXAMPLE:</span> Recurrent (IDH-wildtype Glioblastoma) | |||
| | |<span class="blue-text">EXAMPLE:</span> D, P, T | ||
| | | | ||
| | | | ||
|- | |- | ||
| | | | ||
| | | | ||
| | | | ||
| | | | ||
| | | | ||
| | |||
| | |||
| | | | ||
|} | |} | ||
Rearrangements involving the TCL1 (T-cell leukemia/lymphoma 1) family genes—''TCL1A, MTCP1'' (mature T-cell proliferation), or ''TCL1B'' (also known as ''TCL1/MTCP''1-like 1 [''TML''1])—are highly specific to T-PLL and occur in more than 90% of cases. These translocations juxtapose the ''TRA'' locus with the oncogenes ''TCL1A'' or ''TCL1B'', or in the case of t(X;14), with the ''MTCP1'' gene.<ref name=":6" /><ref name=":7">Matutes E, et al., (2017). T-cell prolymphocytic leukemia, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. Revised 4th Edition. IARC Press: Lyon, France, p346-347.</ref> | |||
Rearrangements involving the TCL1 (T-cell leukemia/lymphoma 1) family genes—''TCL1A, MTCP1'' (mature T-cell proliferation), or ''TCL1B'' (also known as ''TCL1/MTCP''1-like 1 [''TML''1])—are highly specific to T-PLL and occur in more than 90% of cases. These translocations juxtapose the ''TRA'' locus with the oncogenes ''TCL1A'' or ''TCL1B'', or in the case of t(X;14), with the ''MTCP1'' gene.<ref name=":6" /><ref name=":7" /> | |||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
| Line 119: | Line 113: | ||
|No | |No | ||
|No | |No | ||
|These genetic abnormalities serve as diagnostic markers and generally indicate an aggressive disease. This is due to their role in overexpressing oncogenes like ''TCL1A''. | |These genetic abnormalities serve as diagnostic markers and generally indicate an aggressive disease. This is due to their role in overexpressing oncogenes like ''TCL1A''. Major diagnostic criteria.<ref name=":6" /> | ||
|- | |- | ||
|t(X;14)(q28;q11.2) | |t(X;14)(q28;q11.2) | ||
| Line 128: | Line 122: | ||
|No | |No | ||
|No | |No | ||
| | |Major diagnostic criteria.<ref name=":6" /> | ||
|} | |} | ||
==Individual Region Genomic Gain/Loss/LOH== | ==Individual Region Genomic Gain/Loss/LOH== | ||
Approximately 70-80% of T-PLL karyotypes are complex, which is considered minor diagnostic criteria, and usually include 3-5 or more structural aberrations. Common cytogenetic abnormalities include those of chromosome 8, such as idic(8)(p11.2), t(8;8)(p11.2;q12), and trisomy 8q. Other frequent changes are deletions in 12p13 and 22q, gains in 8q24 (MYC), and abnormalities in chromosomes 5p, 6, and 17.<ref name=":5" /> | Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene rearrangements. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Can refer to CGC workgroup tables as linked on the homepage if applicable. Please include references throughout the table. Do not delete the table.'') </span> | ||
{| class="wikitable sortable" | |||
|- | |||
!Chr #!!Gain, Loss, Amp, LOH!!Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size]!!Relevant Gene(s) | |||
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | |||
!Established Clinical Significance Per Guidelines - Yes or No (Source) | |||
!Clinical Relevance Details/Other Notes | |||
|- | |||
|<span class="blue-text">EXAMPLE:</span> | |||
7 | |||
|<span class="blue-text">EXAMPLE:</span> Loss | |||
|<span class="blue-text">EXAMPLE:</span> | |||
chr7 | |||
|<span class="blue-text">EXAMPLE:</span> | |||
Unknown | |||
|<span class="blue-text">EXAMPLE:</span> D, P | |||
|<span class="blue-text">EXAMPLE:</span> No | |||
|<span class="blue-text">EXAMPLE:</span> | |||
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add references). | |||
|- | |||
|<span class="blue-text">EXAMPLE:</span> | |||
8 | |||
|<span class="blue-text">EXAMPLE:</span> Gain | |||
|<span class="blue-text">EXAMPLE:</span> | |||
chr8 | |||
|<span class="blue-text">EXAMPLE:</span> | |||
Unknown | |||
|<span class="blue-text">EXAMPLE:</span> D, P | |||
| | |||
|<span class="blue-text">EXAMPLE:</span> | |||
Common recurrent secondary finding for t(8;21) (add references). | |||
|- | |||
|<span class="blue-text">EXAMPLE:</span> | |||
17 | |||
|<span class="blue-text">EXAMPLE:</span> Amp | |||
|<span class="blue-text">EXAMPLE:</span> | |||
17q12; chr17:39,700,064-39,728,658 [hg38; 28.6 kb] | |||
|<span class="blue-text">EXAMPLE:</span> | |||
''ERBB2'' | |||
|<span class="blue-text">EXAMPLE:</span> D, P, T | |||
| | |||
|<span class="blue-text">EXAMPLE:</span> | |||
Amplification of ''ERBB2'' is associated with HER2 overexpression in HER2 positive breast cancer (add references). Add criteria for how amplification is defined. | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|} | |||
Approximately 70-80% of T-PLL karyotypes are complex, which is considered minor diagnostic criteria, and usually include 3-5 or more structural aberrations. Common cytogenetic abnormalities include those of chromosome 8, such as idic(8)(p11.2), t(8;8)(p11.2;q12), and trisomy 8q. Other frequent changes are deletions in 12p13 and 22q, gains in 8q24 (MYC), and abnormalities in chromosomes 5p, 6, and 17.<ref name=":5">Elenitoba-Johnson K, et al. T-prolymphocytic leukemia. In: WHO Classification of Tumours Editorial Board. Haematolymphoid tumours [Internet]. Lyon (France): International Agency for Research on Cancer; 2024 [cited 2024 June 12]. (WHO classification of tumors series, 5th ed.; vol. 11). Available from: https://tumourclassification.iarc.who.int/chaptercontent/63/209</ref> | |||
Table: A list of clinically significant and/or recurrent CNAs and CN-LOH with potential or strong diagnostic, prognostic and treatment implications in T-PLL are listed below. | Table: A list of clinically significant and/or recurrent CNAs and CN-LOH with potential or strong diagnostic, prognostic and treatment implications in T-PLL are listed below. | ||
| Line 157: | Line 205: | ||
|No | |No | ||
|No | |No | ||
|Recurrent secondary finding (70-80% of cases). | |Recurrent secondary finding (70-80% of cases). Minor diagnostic criteria.<ref name=":6">{{Cite journal|last=Staber|first=Philipp B.|last2=Herling|first2=Marco|last3=Bellido|first3=Mar|last4=Jacobsen|first4=Eric D.|last5=Davids|first5=Matthew S.|last6=Kadia|first6=Tapan Mahendra|last7=Shustov|first7=Andrei|last8=Tournilhac|first8=Olivier|last9=Bachy|first9=Emmanuel|date=2019-10-03|title=Consensus criteria for diagnosis, staging, and treatment response assessment of T-cell prolymphocytic leukemia|url=https://pubmed.ncbi.nlm.nih.gov/31292114|journal=Blood|volume=134|issue=14|pages=1132–1143|doi=10.1182/blood.2019000402|issn=1528-0020|pmc=7042666|pmid=31292114}}</ref> | ||
|- | |- | ||
|5 | |5 | ||
| Line 166: | Line 214: | ||
|Yes | |Yes | ||
|No | |No | ||
| | |Minor diagnostic criteria.<ref name=":6" /> | ||
|- | |- | ||
|6 | |6 | ||
| Line 184: | Line 232: | ||
|Yes | |Yes | ||
|Yes (poor) | |Yes (poor) | ||
|Frequent, | |Frequent, Minor diagnostic criteria.<ref name=":6" /> | ||
|- | |- | ||
|12 | |12 | ||
| Line 194: | Line 242: | ||
|No | |No | ||
|Haploinsufficiency of the ''CDKN1B'' gene at the 12p13 locus contributes to the development of T-PLL.<ref>{{Cite journal|last=Le Toriellec|first=Emilie|last2=Despouy|first2=Gilles|last3=Pierron|first3=Gaëlle|last4=Gaye|first4=Nogaye|last5=Joiner|first5=Marjorie|last6=Bellanger|first6=Dorine|last7=Vincent-Salomon|first7=Anne|last8=Stern|first8=Marc-Henri|date=2008-02-15|title=Haploinsufficiency of CDKN1B contributes to leukemogenesis in T-cell prolymphocytic leukemia|url=https://pubmed.ncbi.nlm.nih.gov/18073348|journal=Blood|volume=111|issue=4|pages=2321–2328|doi=10.1182/blood-2007-06-095570|issn=0006-4971|pmid=18073348}}</ref> | |Haploinsufficiency of the ''CDKN1B'' gene at the 12p13 locus contributes to the development of T-PLL.<ref>{{Cite journal|last=Le Toriellec|first=Emilie|last2=Despouy|first2=Gilles|last3=Pierron|first3=Gaëlle|last4=Gaye|first4=Nogaye|last5=Joiner|first5=Marjorie|last6=Bellanger|first6=Dorine|last7=Vincent-Salomon|first7=Anne|last8=Stern|first8=Marc-Henri|date=2008-02-15|title=Haploinsufficiency of CDKN1B contributes to leukemogenesis in T-cell prolymphocytic leukemia|url=https://pubmed.ncbi.nlm.nih.gov/18073348|journal=Blood|volume=111|issue=4|pages=2321–2328|doi=10.1182/blood-2007-06-095570|issn=0006-4971|pmid=18073348}}</ref> | ||
Minor diagnostic criteria.<ref name=":6" /> | |||
|- | |- | ||
|13 | |13 | ||
| Line 203: | Line 251: | ||
|No | |No | ||
|No | |No | ||
| | |Minor diagnostic criteria.<ref name=":6" /> | ||
|- | |- | ||
|17 | |17 | ||
| Line 226: | Line 274: | ||
|No | |No | ||
|Leading to the dysregulation of genes such as ''BCL11B'', which is crucial in T-cell development and function.<ref name=":0" /> | |Leading to the dysregulation of genes such as ''BCL11B'', which is crucial in T-cell development and function.<ref name=":0" /> | ||
Minor diagnostic criteria.<ref name=":6" /> | |||
|} | |} | ||
==Diagnostic criteria== | ==Diagnostic criteria== | ||
Diagnosis requires either <u>all three major criteria</u> '''or''' the <u>first two major criteria along with one minor criterion</u>:<ref name=":5" /> | Diagnosis requires either <u>all three major criteria</u> '''or''' the <u>first two major criteria along with one minor criterion</u>:<ref name=":5" /> | ||
| Line 244: | Line 293: | ||
==Characteristic Chromosomal or Other Global Mutational Patterns== | ==Characteristic Chromosomal or Other Global Mutational Patterns== | ||
Put your text here and fill in the table <span style="color:#0070C0">(I''nstructions: Included in this category are alterations such as hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis; microsatellite instability; homologous recombination deficiency; mutational signature pattern; etc. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span> | |||
{| class="wikitable sortable" | |||
|- | |||
!Chromosomal Pattern | |||
!Molecular Pathogenesis | |||
!Prevalence - | |||
Common >20%, Recurrent 5-20% or Rare <5% (Disease) | |||
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | |||
!Established Clinical Significance Per Guidelines - Yes or No (Source) | |||
!Clinical Relevance Details/Other Notes | |||
|- | |||
|<span class="blue-text">EXAMPLE:</span> | |||
Co-deletion of 1p and 18q | |||
|<span class="blue-text">EXAMPLE:</span> See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). | |||
|<span class="blue-text">EXAMPLE:</span> Common (Oligodendroglioma) | |||
|<span class="blue-text">EXAMPLE:</span> D, P | |||
| | |||
| | |||
|- | |||
|<span class="blue-text">EXAMPLE:</span> | |||
Microsatellite instability - hypermutated | |||
| | |||
|<span class="blue-text">EXAMPLE:</span> Common (Endometrial carcinoma) | |||
|<span class="blue-text">EXAMPLE:</span> P, T | |||
| | |||
| | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|} | |||
[[File:Inv(14)(q11.2q32).png|thumb|Inv(14)(q11.2q32)]] | [[File:Inv(14)(q11.2q32).png|thumb|Inv(14)(q11.2q32)]] | ||
The most common chromosomal abnormality in T-PLL involves an inversion of chromosome 14, with breakpoints at q11.2 and q32.1, observed in about 60-80% of patients and described as inv(14). Additionally, in 10-20% of cases, there is a translocation t(14;14)(q11.2;q32.1).<ref name=":5" /> <ref name=":7" /> | The most common chromosomal abnormality in T-PLL involves an inversion of chromosome 14, with breakpoints at q11.2 and q32.1, observed in about 60-80% of patients and described as inv(14). Additionally, in 10-20% of cases, there is a translocation t(14;14)(q11.2;q32.1).<ref name=":5" /> <ref name=":7" /> | ||
| Line 261: | Line 345: | ||
|The most common chromosomal abnormality in T-PLL involves an inversion of chromosome 14, with breakpoints at q11.2 and q32.1, observed in about 60-80% of patients and described as inv(14). Additionally, in 10-20% of cases, there is a translocation t(14;14)(q11.2;q32.1) | |The most common chromosomal abnormality in T-PLL involves an inversion of chromosome 14, with breakpoints at q11.2 and q32.1, observed in about 60-80% of patients and described as inv(14). Additionally, in 10-20% of cases, there is a translocation t(14;14)(q11.2;q32.1) | ||
|} | |} | ||
==Gene Mutations (SNV/INDEL)== | ==Gene Mutations (SNV/INDEL)== | ||
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent or common as well either disease defining and/or clinically significant. If a gene has multiple mechanisms depending on the type or site of the alteration, add multiple entries in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Details on clinical significance such as prognosis and other important information such as concomitant and mutually exclusive mutations can be provided in the notes section. Please include references throughout the table. Do not delete the table.'') </span> | |||
{| class="wikitable sortable" | |||
|- | |||
!Gene!!Genetic Alteration!!Tumor Suppressor Gene, Oncogene, Other!!Prevalence - | |||
Common >20%, Recurrent 5-20% or Rare <5% (Disease) | |||
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | |||
!Established Clinical Significance Per Guidelines - Yes or No (Source) | |||
!Clinical Relevance Details/Other Notes | |||
|- | |||
|<span class="blue-text">EXAMPLE:</span>''EGFR'' | |||
<br /> | |||
|<span class="blue-text">EXAMPLE:</span> Exon 18-21 activating mutations | |||
|<span class="blue-text">EXAMPLE:</span> Oncogene | |||
|<span class="blue-text">EXAMPLE:</span> Common (lung cancer) | |||
|<span class="blue-text">EXAMPLE:</span> T | |||
|<span class="blue-text">EXAMPLE:</span> Yes (NCCN) | |||
|<span class="blue-text">EXAMPLE:</span> Exons 18, 19, and 21 mutations are targetable for therapy. Exon 20 T790M variants cause resistance to first generation TKI therapy and are targetable by second and third generation TKIs (add references). | |||
|- | |||
|<span class="blue-text">EXAMPLE:</span> ''TP53''; Variable LOF mutations | |||
<br /> | |||
|<span class="blue-text">EXAMPLE:</span> Variable LOF mutations | |||
|<span class="blue-text">EXAMPLE:</span> Tumor Supressor Gene | |||
|<span class="blue-text">EXAMPLE:</span> Common (breast cancer) | |||
|<span class="blue-text">EXAMPLE:</span> P | |||
| | |||
|<span class="blue-text">EXAMPLE:</span> >90% are somatic; rare germline alterations associated with Li-Fraumeni syndrome (add reference). Denotes a poor prognosis in breast cancer. | |||
|- | |||
|<span class="blue-text">EXAMPLE:</span> ''BRAF''; Activating mutations | |||
|<span class="blue-text">EXAMPLE:</span> Activating mutations | |||
|<span class="blue-text">EXAMPLE:</span> Oncogene | |||
|<span class="blue-text">EXAMPLE:</span> Common (melanoma) | |||
|<span class="blue-text">EXAMPLE:</span> T | |||
| | |||
| | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|}Note: A more extensive list of mutations can be found in [https://www.cbioportal.org/ <u>cBioportal</u>], [https://cancer.sanger.ac.uk/cosmic <u>COSMIC</u>], and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content. | |||
Although gene mutations beyond ''TCL1'' family alterations are not yet recognized as diagnostic criteria and remain under investigation for T-PLL, the mutational landscape of T-PLL provides valuable insights. These discoveries open up potential avenues for novel targeted therapies in treating this aggressive form of leukemia. | Although gene mutations beyond ''TCL1'' family alterations are not yet recognized as diagnostic criteria and remain under investigation for T-PLL, the mutational landscape of T-PLL provides valuable insights. These discoveries open up potential avenues for novel targeted therapies in treating this aggressive form of leukemia. | ||
| Line 267: | Line 397: | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
!Gene; Genetic Alteration!! | !Gene; Genetic Alteration!!Presumed Mechanism (Tumor Suppressor Gene [TSG] / Oncogene / Other)!!Prevalence (COSMIC / TCGA / Other)!!Concomitant Mutations!!Mutually Exclusive Mutations | ||
! | !Diagnostic Significance (Yes, No or Unknown) | ||
!Prognostic Significance (Yes, No or Unknown) | !Prognostic Significance (Yes, No or Unknown) | ||
!Therapeutic Significance (Yes, No or Unknown) | !Therapeutic Significance (Yes, No or Unknown) | ||
| Line 363: | Line 493: | ||
|Mutations in TP53 are less frequent than deletions.<ref name=":9" />May show overexpression of p53 in some cases.<ref name=":7" /> | |Mutations in TP53 are less frequent than deletions.<ref name=":9" />May show overexpression of p53 in some cases.<ref name=":7" /> | ||
|}Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content. | |}Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content. | ||
==Epigenomic Alterations== | ==Epigenomic Alterations== | ||
Research indicates that epigenetic modifications in the regulatory regions of key oncogenes and genes involved in DNA damage response and T-cell receptor regulation are clearly present. These changes are closely associated with the transcriptional dysregulation that forms the core lesions of T-PLL.<ref>{{Cite journal|last=Tian|first=Shulan|last2=Zhang|first2=Henan|last3=Zhang|first3=Pan|last4=Kalmbach|first4=Michael|last5=Lee|first5=Jeong-Heon|last6=Ordog|first6=Tamas|last7=Hampel|first7=Paul J.|last8=Call|first8=Timothy G.|last9=Witzig|first9=Thomas E.|date=2021-04-15|title=Epigenetic alteration contributes to the transcriptional reprogramming in T-cell prolymphocytic leukemia|url=https://pubmed.ncbi.nlm.nih.gov/33859327|journal=Scientific Reports|volume=11|issue=1|pages=8318|doi=10.1038/s41598-021-87890-9|issn=2045-2322|pmc=8050249|pmid=33859327}}</ref> | Research indicates that epigenetic modifications in the regulatory regions of key oncogenes and genes involved in DNA damage response and T-cell receptor regulation are clearly present. These changes are closely associated with the transcriptional dysregulation that forms the core lesions of T-PLL.<ref>{{Cite journal|last=Tian|first=Shulan|last2=Zhang|first2=Henan|last3=Zhang|first3=Pan|last4=Kalmbach|first4=Michael|last5=Lee|first5=Jeong-Heon|last6=Ordog|first6=Tamas|last7=Hampel|first7=Paul J.|last8=Call|first8=Timothy G.|last9=Witzig|first9=Thomas E.|date=2021-04-15|title=Epigenetic alteration contributes to the transcriptional reprogramming in T-cell prolymphocytic leukemia|url=https://pubmed.ncbi.nlm.nih.gov/33859327|journal=Scientific Reports|volume=11|issue=1|pages=8318|doi=10.1038/s41598-021-87890-9|issn=2045-2322|pmc=8050249|pmid=33859327}}</ref> | ||
| Line 414: | Line 545: | ||
While there is no noticeable familial clustering of T-cell prolymphocytic leukemia (T-PLL), a subset of cases can develop in the context of ataxia-telangiectasia (AT). AT is characterized by germline mutations in the ''ATM'' gene, and patients with AT are at an increased risk for various malignancies, including T-PLL. In these cases, biallelic inactivation of the ''ATM'' tumor suppressor gene occurs, with about 10% to 15% penetrance of the tumor phenotype by early adulthood. T-PLL represents nearly 3% of all malignancies in patients with ataxia-telangiectasia. <ref>{{Cite journal|last=Suarez|first=Felipe|last2=Mahlaoui|first2=Nizar|last3=Canioni|first3=Danielle|last4=Andriamanga|first4=Chantal|last5=Dubois d'Enghien|first5=Catherine|last6=Brousse|first6=Nicole|last7=Jais|first7=Jean-Philippe|last8=Fischer|first8=Alain|last9=Hermine|first9=Olivier|date=2015-01-10|title=Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the French national registry of primary immune deficiencies|url=https://pubmed.ncbi.nlm.nih.gov/25488969|journal=Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology|volume=33|issue=2|pages=202–208|doi=10.1200/JCO.2014.56.5101|issn=1527-7755|pmid=25488969}}</ref> <ref>{{Cite journal|last=Taylor|first=A. M.|last2=Metcalfe|first2=J. A.|last3=Thick|first3=J.|last4=Mak|first4=Y. F.|date=1996-01-15|title=Leukemia and lymphoma in ataxia telangiectasia|url=https://pubmed.ncbi.nlm.nih.gov/8555463|journal=Blood|volume=87|issue=2|pages=423–438|issn=0006-4971|pmid=8555463}}</ref> <ref>{{Cite journal|last=Li|first=Geling|last2=Waite|first2=Emily|last3=Wolfson|first3=Julie|date=2017-12-26|title=T-cell prolymphocytic leukemia in an adolescent with ataxia-telangiectasia: novel approach with a JAK3 inhibitor (tofacitinib)|url=https://pubmed.ncbi.nlm.nih.gov/29296924|journal=Blood Advances|volume=1|issue=27|pages=2724–2728|doi=10.1182/bloodadvances.2017010470|issn=2473-9529|pmc=5745136|pmid=29296924}}</ref> | While there is no noticeable familial clustering of T-cell prolymphocytic leukemia (T-PLL), a subset of cases can develop in the context of ataxia-telangiectasia (AT). AT is characterized by germline mutations in the ''ATM'' gene, and patients with AT are at an increased risk for various malignancies, including T-PLL. In these cases, biallelic inactivation of the ''ATM'' tumor suppressor gene occurs, with about 10% to 15% penetrance of the tumor phenotype by early adulthood. T-PLL represents nearly 3% of all malignancies in patients with ataxia-telangiectasia. <ref>{{Cite journal|last=Suarez|first=Felipe|last2=Mahlaoui|first2=Nizar|last3=Canioni|first3=Danielle|last4=Andriamanga|first4=Chantal|last5=Dubois d'Enghien|first5=Catherine|last6=Brousse|first6=Nicole|last7=Jais|first7=Jean-Philippe|last8=Fischer|first8=Alain|last9=Hermine|first9=Olivier|date=2015-01-10|title=Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the French national registry of primary immune deficiencies|url=https://pubmed.ncbi.nlm.nih.gov/25488969|journal=Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology|volume=33|issue=2|pages=202–208|doi=10.1200/JCO.2014.56.5101|issn=1527-7755|pmid=25488969}}</ref> <ref>{{Cite journal|last=Taylor|first=A. M.|last2=Metcalfe|first2=J. A.|last3=Thick|first3=J.|last4=Mak|first4=Y. F.|date=1996-01-15|title=Leukemia and lymphoma in ataxia telangiectasia|url=https://pubmed.ncbi.nlm.nih.gov/8555463|journal=Blood|volume=87|issue=2|pages=423–438|issn=0006-4971|pmid=8555463}}</ref> <ref>{{Cite journal|last=Li|first=Geling|last2=Waite|first2=Emily|last3=Wolfson|first3=Julie|date=2017-12-26|title=T-cell prolymphocytic leukemia in an adolescent with ataxia-telangiectasia: novel approach with a JAK3 inhibitor (tofacitinib)|url=https://pubmed.ncbi.nlm.nih.gov/29296924|journal=Blood Advances|volume=1|issue=27|pages=2724–2728|doi=10.1182/bloodadvances.2017010470|issn=2473-9529|pmc=5745136|pmid=29296924}}</ref> | ||
==Additional Information== | ==Additional Information== | ||
In T-PLL, the rapid growth of the disease necessitates immediate initiation of treatment. The most effective first-line treatment is alemtuzumab, an anti-CD52 antibody with remission rates over 80%. However, these remissions usually last only 1-2 years. To potentially extend remission, eligible patients are advised to undergo allogeneic blood stem cell transplantation (allo-SCT) during their first complete remission, which can lead to longer remission durations of over 4-5 years for 15-30% of patients. Consequently, the prognosis for T-PLL remains poor, with median overall survival times under two years and five-year survival rates below 5%[https://clinicaltrials.gov/study/NCT03989466 . Ongoing studies are exploring molecularly targeted drugs and signaling pathway inhibitors, for routine clinical use in treating T-PLL.] | |||
* In T-PLL, the rapid growth of the disease necessitates immediate initiation of treatment. The most effective first-line treatment is alemtuzumab, an anti-CD52 antibody with remission rates over 80%. However, these remissions usually last only 1-2 years. To potentially extend remission, eligible patients are advised to undergo allogeneic blood stem cell transplantation (allo-SCT) during their first complete remission, which can lead to longer remission durations of over 4-5 years for 15-30% of patients. Consequently, the prognosis for T-PLL remains poor, with median overall survival times under two years and five-year survival rates below 5%[https://clinicaltrials.gov/study/NCT03989466 . Ongoing studies are exploring molecularly targeted drugs and signaling pathway inhibitors, for routine clinical use in treating T-PLL.] | |||
This disease is <u>defined/characterized</u> as detailed below: | |||
* T-prolymphocytic leukemia (T-PLL) is an aggressive form of T-cell leukemia marked by the proliferation of small to medium-sized prolymphocytes exhibiting a mature post-thymic T-cell phenotype.<ref name=":5" /> | |||
The <u>epidemiology/prevalence</u> of this disease is detailed below: | |||
* T-PLL is an uncommon disease, accounting for approximately 2% of all mature lymphoid leukemias in adults. It mainly affects older individuals, with a median onset age of 65 years, ranging from 30 to 94 years. The disorder exhibits a slight male predominance, with a male to female ratio of 1.33:1.<ref name=":5" /> | |||
The <u>clinical features</u> of this disease are detailed below: | |||
* The most prevalent symptom of the disease is a leukemic presentation, characterized by a rapid, exponential increase in lymphocyte counts, which exceed 100 × 10^9/L in 75% of patients. Approximately 30% of patients may initially experience an asymptomatic, slow-progressing phase, but this typically develops into an active disease state.<ref name=":5" /><ref name=":6" /> | |||
Signs and symptoms - B symptoms (Fever, night sweats, weight loss); Hepatosplenomegaly (Frequently observed); Generalized lymphadenopathy with slightly enlarged lymph nodes (Frequently observed); Cutaneous involvement (20%); Malignant effusions (15%) | |||
Laboratory findings - Anemia and thrombocytopenia; Marked lymphocytosis > 100 × 10^9/L (75% of cases); Atypical lymphocytosis > 5 × 10^9/L; Serum lactate dehydrogenase (LDH) (increased-may reflect disease burden); β2 microglobulin (B2M) (increased-may reflect disease burden) | |||
The <u>sites of involvement</u> of this disease are detailed below: | |||
* Peripheral blood, bone marrow, spleen (mostly red pulp), liver, lymph node (mostly paracortical), and sometimes skin and serosa (primarily pleura). Extra lymphatic and extramedullary atypical manifestations including skin, muscles and intestines are particularly common in relapse.<ref name=":5" /> | |||
The <u>morphologic features</u> of this disease are detailed below: | |||
* Blood smears in T-PLL typically reveal anemia, thrombocytopenia, and leukocytosis, with atypical lymphocytes in three morphological forms: The most common form (75% of cases) features medium-sized cells with a high nuclear-to-cytoplasmic ratio, moderately condensed chromatin, a single visible nucleolus, and slightly basophilic cytoplasm. In 20% of cases, the cells appear as a small cell variant with densely condensed chromatin and an inconspicuous nucleolus. About 5% of cases exhibit a cerebriform variant with irregular nuclei resembling those in mycosis fungoides. Regardless of the nuclear features, a common morphological characteristic is the presence of cytoplasmic protrusions or blebs.<ref>{{Cite journal|last=Gutierrez|first=Marc|last2=Bladek|first2=Patrick|last3=Goksu|first3=Busra|last4=Murga-Zamalloa|first4=Carlos|last5=Bixby|first5=Dale|last6=Wilcox|first6=Ryan|date=2023-07-28|title=T-Cell Prolymphocytic Leukemia: Diagnosis, Pathogenesis, and Treatment|url=https://pubmed.ncbi.nlm.nih.gov/37569479|journal=International Journal of Molecular Sciences|volume=24|issue=15|pages=12106|doi=10.3390/ijms241512106|issn=1422-0067|pmc=PMC10419310|pmid=37569479}}</ref>Bone marrow aspirates show clusters of these neoplastic cells, with a mixed pattern of involvement including diffuse and interstitial, in trephine core biopsy.<ref name=":6" /> | |||
The <u>immunophenotype</u> of this disease is detailed below: | |||
* '''Cytochemistry:''' T-cell prolymphocytes show strong staining with alpha-naphthyl acetate esterase and acid phosphatase, presenting a distinctive dot-like pattern, but cytochemistry is not commonly used for diagnosis.<ref>{{Cite journal|last=Yang|first=K.|last2=Bearman|first2=R. M.|last3=Pangalis|first3=G. A.|last4=Zelman|first4=R. J.|last5=Rappaport|first5=H.|date=1982-08|title=Acid phosphatase and alpha-naphthyl acetate esterase in neoplastic and non-neoplastic lymphocytes. A statistical analysis|url=https://pubmed.ncbi.nlm.nih.gov/6179423|journal=American Journal of Clinical Pathology|volume=78|issue=2|pages=141–149|doi=10.1093/ajcp/78.2.141|issn=0002-9173|pmid=6179423}}</ref> | |||
* '''Immunophenotype:''' T-cell prolymphocytes exhibit a post-thymic T-cell phenotype. In 60% of cases, the cells are CD4+ and CD8-. In 25% of cases, they co-express both CD4 and CD8, while the remaining 15% are CD4- and CD8+.<ref name=":7" /> | |||
Positive (universal) - cyTCL1 (highest specificity), CD2, CD3 (may be weak), CD5, CD7 (strong), TCR-α/β, S100 (30% of cases) | |||
Positive (subset) - CD4 (in some cases CD4+/CD8+ or CD4-/CD8+), CD52 (usually expressed at high density, therapeutic target), activation markers are variable (CD25, CD38, CD43, CD26, CD27) | |||
Negative (universal) - TdT, CD1a, CD57, CD16, HTLV1 | |||
Negative (subset) - CD8 (in some cases CD4+/CD8+ or CD4-/CD8+) | |||
==Links== | ==Links== | ||
(use the "Link" icon that looks like two overlapping circles at the top of the page) <span style="color:#0070C0">(''Instructions: Highlight text to which you want to add a link in this section or elsewhere, select the "Link" icon at the top of the page, and search the name of the internal page to which you want to link this text, or enter an external internet address by including the "<nowiki>http://www</nowiki>." portion.'')</span> | (use the "Link" icon that looks like two overlapping circles at the top of the page) <span style="color:#0070C0">(''Instructions: Highlight text to which you want to add a link in this section or elsewhere, select the "Link" icon at the top of the page, and search the name of the internal page to which you want to link this text, or enter an external internet address by including the "<nowiki>http://www</nowiki>." portion.'')</span> | ||