HAEM5:Myeloproliferative neoplasm, NOS: Difference between revisions

From Compendium of Cancer Genome Aberrations
Jump to navigation Jump to search
[unchecked revision][checked revision]
Created page with "{{DISPLAYTITLE:Myeloproliferative neoplasm, NOS}} Haematolymphoid Tumours (5th ed.) {{Under Construction}} <blockquote class='blockedit'>{{Box-ro..."
 
No edit summary
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{DISPLAYTITLE:Myeloproliferative neoplasm, NOS}}
{{DISPLAYTITLE:Myeloproliferative neoplasm, NOS}}
[[HAEM5:Table_of_Contents|Haematolymphoid Tumours (5th ed.)]]
[[HAEM5:Table_of_Contents|Haematolymphoid Tumours (WHO Classification, 5th ed.)]]


{{Under Construction}}
{{Under Construction}}


<blockquote class='blockedit'>{{Box-round|title=HAEM5 Conversion Notes|This page was converted to the new template on 2023-11-03. The original page can be found at [[HAEM4:Myeloproliferative Neoplasm (MPN), Unclassifiable]].
<blockquote class="blockedit">{{Box-round|title=Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification|This page was converted to the new template on 2023-12-07. The original page can be found at [[HAEM4:Myeloproliferative Neoplasm (MPN), Unclassifiable]].
}}</blockquote>
}}</blockquote>
==Primary Author(s)*==


Put your text here<span style="color:#0070C0"> (''Name and affiliation; example:'' Jane Smith, PhD, Institute of Genomics) </span>
<span style="color:#0070C0">(General Instructions – The focus of these pages is the clinically significant genetic alterations in each disease type. This is based on up-to-date knowledge from multiple resources such as PubMed and the WHO classification books. The CCGA is meant to be a supplemental resource to the WHO classification books; the CCGA captures in a continually updated wiki-stye manner the current genetics/genomics knowledge of each disease, which evolves more rapidly than books can be revised and published. If the same disease is described in multiple WHO classification books, the genetics-related information for that disease will be consolidated into a single main page that has this template (other pages would only contain a link to this main page). Use [https://www.genenames.org/ <u>HUGO-approved gene names and symbols</u>] (italicized when appropriate), [https://varnomen.hgvs.org/ <u>HGVS-based nomenclature for variants</u>], as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column in a table, click nearby within the table and select the > symbol that appears. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see </span><u>[[Author_Instructions]]</u><span style="color:#0070C0"> and [[Frequently Asked Questions (FAQs)|<u>FAQs</u>]] as well as contact your [[Leadership|<u>Associate Editor</u>]] or [mailto:CCGA@cancergenomics.org <u>Technical Support</u>].)</span>


__TOC__
==Primary Author(s)*==
Thomas Lee, MD, PhD, University of California, Los Angeles
==WHO Classification of Disease==


==Cancer Category/Type==
{| class="wikitable"
 
!Structure
Myeloproliferative neoplasm
!Disease
 
|-
==Cancer Sub-Classification / Subtype==
|Book
 
|Haematolymphoid Tumours (5th ed.)
Myeloproliferative neoplasm, unclassifiable
|-
 
|Category
==Definition / Description of Disease==
|Myeloid proliferations and neoplasms
 
|-
The myeloproliferative neoplasm, unclassifiable (MPN, U) designation is used for cases with definite features of a myeloproliferative neoplasm (MPN) that fail to meet the specific criteria needed for diagnosis or features of more than one myeloproliferative neoplasm, and has three main uses<ref name=":0">Kvasnicka HM, et al., (2017). Myeloproliferative neoplasm, unclassifiable, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. IARC Press: Lyon, France, p129-171.</ref>. The first occurs in the early disease stage where the features needed to distinguish polycythemia vera, prefibrotic/early stage primary myelofibrosis, and essential thrombocythemia have not yet sufficiently developed. The second arises in the advanced stage where late stage features including severe myelofibrosis, osteosclerosis, dysplasia, and increased blasts mask the underlying diagnosis. Similarly, the underlying diagnosis cannot be determined due to a concurrent neoplasm or inflammatory condition in the third main use.
|Family
|Myeloproliferative neoplasms
|-
|Type
|Myeloproliferative neoplasms
|-
|Subtype(s)
|Myeloproliferative neoplasm, NOS
|}


==Synonyms / Terminology==
==Related Terminology==


Myeloproliferative disease, NOS; Chronic myeloproliferative disease, unclassifiable.
==Epidemiology / Prevalence==
While some reports have indicated that MPN, U accounts for 10-15% of MPNs<ref name=":0" /> with past controversy about the reproducibility of the WHO classification<ref>{{Cite journal|last=Barbui|first=T.|last2=Thiele|first2=J.|last3=Vannucchi|first3=A. M.|last4=Tefferi|first4=A.|date=2013-10|title=Problems and pitfalls regarding WHO-defined diagnosis of early/prefibrotic primary myelofibrosis versus essential thrombocythemia|url=https://pubmed.ncbi.nlm.nih.gov/23467025|journal=Leukemia|volume=27|issue=10|pages=1953–1958|doi=10.1038/leu.2013.74|issn=1476-5551|pmid=23467025}}</ref>, the revised 2016 WHO diagnostic criteria based on clinical, morphologic, and molecular features may potentially reduce the frequency to <5%<ref name=":0" />. Two studies have shown that 19 (27%) of 71 and 5 (45%) of 11 MPN, U cases classified according to 2008 WHO diagnostic criteria remained classified as MPN, U following 2016 WHO diagnostic criteria<ref name=":2">{{Cite journal|last=Iurlo|first=Alessandra|last2=Gianelli|first2=Umberto|last3=Cattaneo|first3=Daniele|last4=Thiele|first4=Juergen|last5=Orazi|first5=Attilio|date=2017-04|title=Impact of the 2016 revised WHO criteria for myeloproliferative neoplasms, unclassifiable: Comparison with the 2008 version|url=https://pubmed.ncbi.nlm.nih.gov/28109016|journal=American Journal of Hematology|volume=92|issue=4|pages=E48–E51|doi=10.1002/ajh.24657|issn=1096-8652|pmid=28109016}}</ref><ref name=":3">{{Cite journal|last=Yun|first=Jiwon|last2=Kim|first2=Jung-Ah|last3=Park|first3=Junseo|last4=Im|first4=Kyongok|last5=Lee|first5=Young Eun|last6=Jeong|first6=Dajeong|last7=Ryu|first7=Sohee|last8=Lim|first8=Kyu Min|last9=Kim|first9=Sung-Min|date=2020-09-02|title=Reclassification of subtypes in Philadelphia chromosome-negative myeloproliferative neoplasm by 2016 WHO diagnostic criteria: focus on the cases classified as myeloproliferative neoplasm, unclassifiable by the 2008 version|url=https://pubmed.ncbi.nlm.nih.gov/32876501|journal=Leukemia & Lymphoma|pages=1–5|doi=10.1080/10428194.2020.1808212|issn=1029-2403|pmid=32876501}}</ref>.
In the United States from 2001-2012, the age-adjusted incidence rate was 4.8 per one million person-years (PY) with a median age of 73 years and a male-to-female incidence rate ratio of 1.42<ref>Srour SA, Devesa SS, Morton LM, Check DP, Curtis RE, Linet MS, Dores GM. Incidence and patient survival of myeloproliferative neoplasms and myelodysplastic/myeloproliferative neoplasms in the United States, 2001-12. Br J Haematol. 2016 Aug;174(3):382-96. doi: 10.1111/bjh.14061. Epub 2016 Apr 7. Erratum in: Br J Haematol. 2017 Apr;177(2):331. PMID: 27061824; PMCID: PMC4961550.</ref>. A study of 71 2008 WHO diagnosed MPN,U cases indicated a median age of 61 years (range: 14 - 91 years) with males representing 43.7% of cases<ref name=":1">Gianelli U, Cattaneo D, Bossi A, Cortinovis I, Boiocchi L, Liu YC, Augello C, Bonometti A, Fiori S, Orofino N, Guidotti F, Orazi A, Iurlo A. The myeloproliferative neoplasms, unclassifiable: clinical and pathological considerations. Mod Pathol. 2017 Feb;30(2):169-179. doi: 10.1038/modpathol.2016.182. Epub 2016 Oct 14. Erratum in: Mod Pathol. 2017 Jul;30(7):1043. PMID: 27739437.</ref>. A study of 26 2016 WHO diagnosed MPN,U cases showed a median age of 44.3 years (range: 18.2 - 79.4 years) with males representing 27% of cases<ref name=":4">{{Cite journal|last=Rumi|first=Elisa|last2=Boveri|first2=Emanuela|last3=Bellini|first3=Marta|last4=Pietra|first4=Daniela|last5=Ferretti|first5=Virginia V.|last6=Sant'Antonio|first6=Emanuela|last7=Cavalloni|first7=Chiara|last8=Casetti|first8=Ilaria C.|last9=Roncoroni|first9=Elisa|date=2017-11-24|title=Clinical course and outcome of essential thrombocythemia and prefibrotic myelofibrosis according to the revised WHO 2016 diagnostic criteria|url=https://pubmed.ncbi.nlm.nih.gov/29254200|journal=Oncotarget|volume=8|issue=60|pages=101735–101744|doi=10.18632/oncotarget.21594|issn=1949-2553|pmc=5731910|pmid=29254200}}</ref>.
==Clinical Features==
Put your text here and fill in the table <span style="color:#0070C0">(''Instruction: Can include references in the table'') </span>
{| class="wikitable"
{| class="wikitable"
|'''Signs and Symptoms'''
|+
|EXAMPLE Asymptomatic (incidental finding on complete blood counts)
|Acceptable
 
|Myeloproliferative neoplasm, unclassifiable
EXAMPLE B-symptoms (weight loss, fever, night sweats)
 
EXAMPLE Fatigue
 
EXAMPLE Lymphadenopathy (uncommon)
|-
|-
|'''Laboratory Findings'''
|Not Recommended
|EXAMPLE Cytopenias
|N/A
 
EXAMPLE Lymphocytosis (low level)
|}
|}


==Gene Rearrangements==


<blockquote class='blockedit'>{{Box-round|title=v4:Clinical Features|The content below was from the old template. Please incorporate above.}}
The clinical features are similar to other MPNs and reflect the stage of disease<ref name=":0" />. The early stage can variably show thrombocytosis and leukocytosis with or without anemia and minimal to absent organomegaly. Splanchnic vein thrombosis may be present<ref>{{Cite journal|last=Gianelli|first=Umberto|last2=Iurlo|first2=Alessandra|last3=Cattaneo|first3=Daniele|last4=Bossi|first4=Anna|last5=Cortinovis|first5=Ivan|last6=Augello|first6=Claudia|last7=Moro|first7=Alessia|last8=Savi|first8=Federica|last9=Castelli|first9=Roberto|date=2015-05|title=Discrepancies between bone marrow histopathology and clinical phenotype in BCR-ABL1-negative myeloproliferative neoplasms associated with splanchnic vein thrombosis|url=https://pubmed.ncbi.nlm.nih.gov/25840747|journal=Leukemia Research|volume=39|issue=5|pages=525–529|doi=10.1016/j.leukres.2015.03.009|issn=1873-5835|pmid=25840747}}</ref>. Marked splenomegaly and/or hepatomegaly with cytopenias can be present with advanced disease.
</blockquote>
==Sites of Involvement==
Blood and bone marrow are sites of involvement similar to other MPNs<ref name=":0" />. Extramedullary hematopoiesis involving the spleen and/or liver may be present in advanced cases.
==Morphologic Features==
The morphologic features are similar to other MPNs and reflect the stage of disease<ref name=":0" />. In the early stage, the peripheral blood may show thrombocytosis and variable neutrophilia. The bone marrow is most often hypercellular with increased megakaryopoiesis showing abnormal forms with clustering and variably increased granulopoiesis and erythropoiesis. Severe myelofibrosis, osteosclerosis, and myelodysplasia can be seen with advanced disease. The presence of ≥ 10% blasts in the peripheral blood or bone marrow and/or significant myelodysplasia indicates a transition to a more aggressive phase and cases initially diagnosed with 10-19% blasts are considered to be in accelerated phase<ref name=":0" />.
==Immunophenotype==
Put your text here and fill in the table <span style="color:#0070C0">(''Instruction: Can include references in the table'') </span>


Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span>
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
!Finding!!Marker
!Driver Gene!!Fusion(s) and Common Partner Genes!!Molecular Pathogenesis!!Typical Chromosomal Alteration(s)
!Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease)
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T
!Established Clinical Significance Per Guidelines - Yes or No (Source)
!Clinical Relevance Details/Other Notes
|-
|-
|Positive (universal)||EXAMPLE CD1
|<span class="blue-text">EXAMPLE:</span> ''ABL1''||<span class="blue-text">EXAMPLE:</span> ''BCR::ABL1''||<span class="blue-text">EXAMPLE:</span> The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1.||<span class="blue-text">EXAMPLE:</span> t(9;22)(q34;q11.2)
|<span class="blue-text">EXAMPLE:</span> Common (CML)
|<span class="blue-text">EXAMPLE:</span> D, P, T
|<span class="blue-text">EXAMPLE:</span> Yes (WHO, NCCN)
|<span class="blue-text">EXAMPLE:</span>
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference).
|-
|-
|Positive (subset)||EXAMPLE CD2
|<span class="blue-text">EXAMPLE:</span> ''CIC''
|-
|<span class="blue-text">EXAMPLE:</span> ''CIC::DUX4''
|Negative (universal)||EXAMPLE CD3
|<span class="blue-text">EXAMPLE:</span> Typically, the last exon of ''CIC'' is fused to ''DUX4''. The fusion breakpoint in ''CIC'' is usually intra-exonic and removes an inhibitory sequence, upregulating ''PEA3'' genes downstream of ''CIC'' including ''ETV1'', ''ETV4'', and ''ETV5''.
|<span class="blue-text">EXAMPLE:</span> t(4;19)(q25;q13)
|<span class="blue-text">EXAMPLE:</span> Common (CIC-rearranged sarcoma)
|<span class="blue-text">EXAMPLE:</span> D
|
|<span class="blue-text">EXAMPLE:</span>
 
''DUX4'' has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references).
|-
|-
|Negative (subset)||EXAMPLE CD4
|<span class="blue-text">EXAMPLE:</span> ''ALK''
|}
|<span class="blue-text">EXAMPLE:</span> ''ELM4::ALK''




<blockquote class='blockedit'>{{Box-round|title=v4:Immunophenotype|The content below was from the old template. Please incorporate above.}}
Other fusion partners include ''KIF5B, NPM1, STRN, TFG, TPM3, CLTC, KLC1''
|<span class="blue-text">EXAMPLE:</span> Fusions result in constitutive activation of the ''ALK'' tyrosine kinase. The most common ''ALK'' fusion is ''EML4::ALK'', with breakpoints in intron 19 of ''ALK''. At the transcript level, a variable (5’) partner gene is fused to 3’ ''ALK'' at exon 20. Rarely, ''ALK'' fusions contain exon 19 due to breakpoints in intron 18.
|<span class="blue-text">EXAMPLE:</span> N/A
|<span class="blue-text">EXAMPLE:</span> Rare (Lung adenocarcinoma)
|<span class="blue-text">EXAMPLE:</span> T
|
|<span class="blue-text">EXAMPLE:</span>


There is no defining immunophenotype.
Both balanced and unbalanced forms are observed by FISH (add references).
 
</blockquote>
==Chromosomal Rearrangements (Gene Fusions)==
 
Put your text here and fill in the table
 
{| class="wikitable sortable"
|-
|-
!Chromosomal Rearrangement!!Genes in Fusion (5’ or 3’ Segments)!!Pathogenic Derivative!!Prevalence
|<span class="blue-text">EXAMPLE:</span> ''ABL1''
!Diagnostic Significance (Yes, No or Unknown)
|<span class="blue-text">EXAMPLE:</span> N/A
!Prognostic Significance (Yes, No or Unknown)
|<span class="blue-text">EXAMPLE:</span> Intragenic deletion of exons 2–7 in ''EGFR'' removes the ligand-binding domain, resulting in a constitutively active tyrosine kinase with downstream activation of multiple oncogenic pathways.
!Therapeutic Significance (Yes, No or Unknown)
|<span class="blue-text">EXAMPLE:</span> N/A
!Notes
|<span class="blue-text">EXAMPLE:</span> Recurrent (IDH-wildtype Glioblastoma)
|<span class="blue-text">EXAMPLE:</span> D, P, T
|
|
|-
|-
|EXAMPLE t(9;22)(q34;q11.2)||EXAMPLE 3'ABL1 / 5'BCR||EXAMPLE der(22)||EXAMPLE 20% (COSMIC)
|
EXAMPLE 30% (add reference)
|
|Yes
|
|No
|
|Yes
|
|EXAMPLE
|
|
|
|}


The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference).
<blockquote class="blockedit">{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}}</blockquote>
|}
 
<blockquote class='blockedit'>{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}}


There are no associated chromosomal rearrangements. There should be no ''BCR''-''ABL1'' or ''PCM1-JAK2'' fusion and no ''PDGFRA'', ''PDGFRB'', or ''FGFR1'' rearrangement. Rearrangements that have been reported include t(4;12)(q12;p13)<ref name=":5">{{Cite journal|last=Zhang|first=Ling|last2=Wang|first2=Man|last3=Wang|first3=Zheng|last4=Zeng|first4=Zhao|last5=Wen|first5=Lijun|last6=Xu|first6=Yi|last7=Yao|first7=Li|last8=Cen|first8=Jiannong|last9=Li|first9=Hongzhi|date=2020-10|title=Identification of a novel ETV6 truncated fusion gene in myeloproliferative neoplasm, unclassifiable with t(4;12)(q12;p13)|url=https://pubmed.ncbi.nlm.nih.gov/32734549|journal=Annals of Hematology|volume=99|issue=10|pages=2445–2447|doi=10.1007/s00277-020-04207-y|issn=1432-0584|pmid=32734549}}</ref>.
There are no associated chromosomal rearrangements. There should be no ''BCR''-''ABL1'' or ''PCM1-JAK2'' fusion and no ''PDGFRA'', ''PDGFRB'', or ''FGFR1'' rearrangement. Rearrangements that have been reported include t(4;12)(q12;p13)<ref name=":5">{{Cite journal|last=Zhang|first=Ling|last2=Wang|first2=Man|last3=Wang|first3=Zheng|last4=Zeng|first4=Zhao|last5=Wen|first5=Lijun|last6=Xu|first6=Yi|last7=Yao|first7=Li|last8=Cen|first8=Jiannong|last9=Li|first9=Hongzhi|date=2020-10|title=Identification of a novel ETV6 truncated fusion gene in myeloproliferative neoplasm, unclassifiable with t(4;12)(q12;p13)|url=https://pubmed.ncbi.nlm.nih.gov/32734549|journal=Annals of Hematology|volume=99|issue=10|pages=2445–2447|doi=10.1007/s00277-020-04207-y|issn=1432-0584|pmid=32734549}}</ref>.
<blockquote class="blockedit">
<center><span style="color:Maroon">'''End of V4 Section'''</span>
----
</blockquote>
</blockquote>




<blockquote class='blockedit'>{{Box-round|title=v4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).|Please incorporate this section into the relevant tables found in:
<blockquote class="blockedit">{{Box-round|title=v4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).|Please incorporate this section into the relevant tables found in:
* Chromosomal Rearrangements (Gene Fusions)
* Chromosomal Rearrangements (Gene Fusions)
* Individual Region Genomic Gain/Loss/LOH
* Individual Region Genomic Gain/Loss/LOH
* Characteristic Chromosomal Patterns
* Characteristic Chromosomal Patterns
* Gene Mutations (SNV/INDEL)}}
* Gene Mutations (SNV/INDEL)}}</blockquote>


Follow-up studies on a 6 - 12 month interval can provide additional information for classification<ref name=":0" />.
Follow-up studies on a 6 - 12 month interval can provide additional information for classification<ref name=":0">Kvasnicka HM, et al., (2017). Myeloproliferative neoplasm, unclassifiable, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. IARC Press: Lyon, France, p129-171.</ref>.


<blockquote class="blockedit">
<center><span style="color:Maroon">'''End of V4 Section'''</span>
----
</blockquote>
</blockquote>
==Individual Region Genomic Gain/Loss/LOH==
==Individual Region Genomic Gain/Loss/LOH==


Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable.'') </span>


Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene rearrangements. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Can refer to CGC workgroup tables as linked on the homepage if applicable. Please include references throughout the table. Do not delete the table.'') </span>
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
!Chr #!!Gain / Loss / Amp / LOH!!Minimal Region Genomic Coordinates [Genome Build]!!Minimal Region Cytoband
!Chr #!!Gain, Loss, Amp, LOH!!Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size]!!Relevant Gene(s)
!Diagnostic Significance (Yes, No or Unknown)
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T
!Prognostic Significance (Yes, No or Unknown)
!Established Clinical Significance Per Guidelines - Yes or No (Source)
!Therapeutic Significance (Yes, No or Unknown)
!Clinical Relevance Details/Other Notes
!Notes
|-
|-
|EXAMPLE
|<span class="blue-text">EXAMPLE:</span>
 
7
7
|EXAMPLE Loss
|<span class="blue-text">EXAMPLE:</span> Loss
|EXAMPLE
|<span class="blue-text">EXAMPLE:</span>
 
chr7:1- 159,335,973 [hg38]
|EXAMPLE
 
chr7
chr7
|Yes
|<span class="blue-text">EXAMPLE:</span>
|Yes
Unknown
|No
|<span class="blue-text">EXAMPLE:</span> D, P
|EXAMPLE
|<span class="blue-text">EXAMPLE:</span> No
 
|<span class="blue-text">EXAMPLE:</span>
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference).
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add references).
|-
|-
|EXAMPLE
|<span class="blue-text">EXAMPLE:</span>
 
8
8
|EXAMPLE Gain
|<span class="blue-text">EXAMPLE:</span> Gain
|EXAMPLE
|<span class="blue-text">EXAMPLE:</span>
 
chr8:1-145,138,636 [hg38]
|EXAMPLE
 
chr8
chr8
|No
|<span class="blue-text">EXAMPLE:</span>
|No
Unknown
|No
|<span class="blue-text">EXAMPLE:</span> D, P
|EXAMPLE
|
 
|<span class="blue-text">EXAMPLE:</span>
Common recurrent secondary finding for t(8;21) (add reference).
Common recurrent secondary finding for t(8;21) (add references).
|-
|<span class="blue-text">EXAMPLE:</span>
17
|<span class="blue-text">EXAMPLE:</span> Amp
|<span class="blue-text">EXAMPLE:</span>
17q12; chr17:39,700,064-39,728,658 [hg38; 28.6 kb]
|<span class="blue-text">EXAMPLE:</span>
''ERBB2''
|<span class="blue-text">EXAMPLE:</span> D, P, T
|
|<span class="blue-text">EXAMPLE:</span>
Amplification of ''ERBB2'' is associated with HER2 overexpression in HER2 positive breast cancer (add references). Add criteria for how amplification is defined.
|-
|
|
|
|
|
|
|
|}
|}


<blockquote class='blockedit'>{{Box-round|title=v4:Genomic Gain/Loss/LOH|The content below was from the old template. Please incorporate above.}}
<blockquote class="blockedit">{{Box-round|title=v4:Genomic Gain/Loss/LOH|The content below was from the old template. Please incorporate above.}}</blockquote>


There are no characteristic genomic gain/loss/LOH.
There are no characteristic genomic gain/loss/LOH.
<blockquote class="blockedit">
<center><span style="color:Maroon">'''End of V4 Section'''</span>
----
</blockquote>
</blockquote>
==Characteristic Chromosomal Patterns==
==Characteristic Chromosomal or Other Global Mutational Patterns==


Put your text here <span style="color:#0070C0">(''EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis'')</span>


Put your text here and fill in the table <span style="color:#0070C0">(I''nstructions: Included in this category are alterations such as hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis; microsatellite instability; homologous recombination deficiency; mutational signature pattern; etc. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span>
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
!Chromosomal Pattern
!Chromosomal Pattern
!Diagnostic Significance (Yes, No or Unknown)
!Molecular Pathogenesis
!Prognostic Significance (Yes, No or Unknown)
!Prevalence -
!Therapeutic Significance (Yes, No or Unknown)
Common >20%, Recurrent 5-20% or Rare <5% (Disease)
!Notes
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T
!Established Clinical Significance Per Guidelines - Yes or No (Source)
!Clinical Relevance Details/Other Notes
|-
|-
|EXAMPLE
|<span class="blue-text">EXAMPLE:</span>
 
Co-deletion of 1p and 18q
Co-deletion of 1p and 18q
|Yes
|<span class="blue-text">EXAMPLE:</span> See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).
|No
|<span class="blue-text">EXAMPLE:</span> Common (Oligodendroglioma)
|No
|<span class="blue-text">EXAMPLE:</span> D, P
|EXAMPLE:
|
 
|
See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).
|-
|<span class="blue-text">EXAMPLE:</span>
Microsatellite instability - hypermutated
|
|<span class="blue-text">EXAMPLE:</span> Common (Endometrial carcinoma)
|<span class="blue-text">EXAMPLE:</span> P, T
|
|
|-
|
|
|
|
|
|
|}
|}


<blockquote class='blockedit'>{{Box-round|title=v4:Characteristic Chromosomal Aberrations / Patterns|The content below was from the old template. Please incorporate above.}}
<blockquote class="blockedit">{{Box-round|title=v4:Characteristic Chromosomal Aberrations / Patterns|The content below was from the old template. Please incorporate above.}}</blockquote>


There are no characteristic chromosomal aberrations/patterns. Cytogenetic abnormalities have been described in four (5.6%) of 71 2008 WHO diagnosed cases<ref name=":1" /> and one (20%) of five 2016 WHO diagnosed cases<ref name=":3" />. Chromosomal aberrations that have been reported include trisomy 8<ref name=":1" /> and 46,XY,inv(12)(q15q24.1)<ref name=":3" />.
There are no characteristic chromosomal aberrations/patterns. Cytogenetic abnormalities have been described in four (5.6%) of 71 2008 WHO diagnosed cases<ref name=":1">Gianelli U, Cattaneo D, Bossi A, Cortinovis I, Boiocchi L, Liu YC, Augello C, Bonometti A, Fiori S, Orofino N, Guidotti F, Orazi A, Iurlo A. The myeloproliferative neoplasms, unclassifiable: clinical and pathological considerations. Mod Pathol. 2017 Feb;30(2):169-179. doi: 10.1038/modpathol.2016.182. Epub 2016 Oct 14. Erratum in: Mod Pathol. 2017 Jul;30(7):1043. PMID: 27739437.</ref> and one (20%) of five 2016 WHO diagnosed cases<ref name=":3">{{Cite journal|last=Yun|first=Jiwon|last2=Kim|first2=Jung-Ah|last3=Park|first3=Junseo|last4=Im|first4=Kyongok|last5=Lee|first5=Young Eun|last6=Jeong|first6=Dajeong|last7=Ryu|first7=Sohee|last8=Lim|first8=Kyu Min|last9=Kim|first9=Sung-Min|date=2020-09-02|title=Reclassification of subtypes in Philadelphia chromosome-negative myeloproliferative neoplasm by 2016 WHO diagnostic criteria: focus on the cases classified as myeloproliferative neoplasm, unclassifiable by the 2008 version|url=https://pubmed.ncbi.nlm.nih.gov/32876501|journal=Leukemia & Lymphoma|pages=1–5|doi=10.1080/10428194.2020.1808212|issn=1029-2403|pmid=32876501}}</ref>. Chromosomal aberrations that have been reported include trisomy 8<ref name=":1" /> and 46,XY,inv(12)(q15q24.1)<ref name=":3" />.


<blockquote class="blockedit">
<center><span style="color:Maroon">'''End of V4 Section'''</span>
----
</blockquote>
</blockquote>
==Gene Mutations (SNV/INDEL)==
==Gene Mutations (SNV/INDEL)==


Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity.'') </span>


Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent or common as well either disease defining and/or clinically significant. If a gene has multiple mechanisms depending on the type or site of the alteration, add multiple entries in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Details on clinical significance such as prognosis and other important information such as concomitant and mutually exclusive mutations can be provided in the notes section. Please include references throughout the table. Do not delete the table.'') </span>
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
!Gene; Genetic Alteration!!'''Presumed Mechanism (Tumor Suppressor Gene [TSG] / Oncogene / Other)'''!!'''Prevalence (COSMIC /  TCGA / Other)'''!!'''Concomitant Mutations'''!!'''Mutually Exclusive Mutations'''
!Gene!!Genetic Alteration!!Tumor Suppressor Gene, Oncogene, Other!!Prevalence -
!'''Diagnostic Significance (Yes, No or Unknown)'''
Common >20%, Recurrent 5-20% or Rare <5% (Disease)
!Prognostic Significance (Yes, No or Unknown)
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T  
!Therapeutic Significance (Yes, No or Unknown)
!Established Clinical Significance Per Guidelines - Yes or No (Source)
!Notes
!Clinical Relevance Details/Other Notes
|-
|-
|EXAMPLE: TP53; Variable LOF mutations
|<span class="blue-text">EXAMPLE:</span>''EGFR''


EXAMPLE:
<br />
 
|<span class="blue-text">EXAMPLE:</span> Exon 18-21 activating mutations
EGFR; Exon 20 mutations
|<span class="blue-text">EXAMPLE:</span> Oncogene
 
|<span class="blue-text">EXAMPLE:</span> Common (lung cancer)
EXAMPLE: BRAF; Activating mutations
|<span class="blue-text">EXAMPLE:</span> T
|EXAMPLE: TSG
|<span class="blue-text">EXAMPLE:</span> Yes (NCCN)
|EXAMPLE: 20% (COSMIC)
|<span class="blue-text">EXAMPLE:</span> Exons 18, 19, and 21 mutations are targetable for therapy. Exon 20 T790M variants cause resistance to first generation TKI therapy and are targetable by second and third generation TKIs (add references).
 
|-
EXAMPLE: 30% (add Reference)
|<span class="blue-text">EXAMPLE:</span> ''TP53''; Variable LOF mutations
|EXAMPLE: IDH1 R123H
<br />
|EXAMPLE: EGFR amplification
|<span class="blue-text">EXAMPLE:</span> Variable LOF mutations
|<span class="blue-text">EXAMPLE:</span> Tumor Supressor Gene
|<span class="blue-text">EXAMPLE:</span> Common (breast cancer)
|<span class="blue-text">EXAMPLE:</span> P
|
|<span class="blue-text">EXAMPLE:</span> >90% are somatic; rare germline alterations associated with Li-Fraumeni syndrome (add reference). Denotes a poor prognosis in breast cancer.
|-
|<span class="blue-text">EXAMPLE:</span> ''BRAF''; Activating mutations
|<span class="blue-text">EXAMPLE:</span> Activating mutations
|<span class="blue-text">EXAMPLE:</span> Oncogene
|<span class="blue-text">EXAMPLE:</span> Common (melanoma)
|<span class="blue-text">EXAMPLE:</span> T
|
|
|-
|
|
|
|
|
|
|
|
|
|
|EXAMPLE:  Excludes hairy cell leukemia (HCL) (add reference).
|}Note: A more extensive list of mutations can be found in [https://www.cbioportal.org/ <u>cBioportal</u>], [https://cancer.sanger.ac.uk/cosmic <u>COSMIC</u>], and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
<br />
|}
Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
 


<blockquote class='blockedit'>{{Box-round|title=v4:Gene Mutations (SNV/INDEL)|The content below was from the old template. Please incorporate above.}}
<blockquote class="blockedit">{{Box-round|title=v4:Gene Mutations (SNV/INDEL)|The content below was from the old template. Please incorporate above.}}</blockquote>


Mutations in ''JAK2'', ''MPL'', and ''CALR'' are recurrent. A subset of cases have been reported to be negative for mutations in these three genes (i.e. triple negative). Limited studies have reported mutations in other genes including ''ASXL1''<ref name=":3" /> and ''ZRSR2''<ref name=":3" /><ref name=":5" />.
Mutations in ''JAK2'', ''MPL'', and ''CALR'' are recurrent. A subset of cases have been reported to be negative for mutations in these three genes (i.e. triple negative). Limited studies have reported mutations in other genes including ''ASXL1''<ref name=":3" /> and ''ZRSR2''<ref name=":3" /><ref name=":5" />.
Line 249: Line 293:
!Gene!!Mutation!!Oncogene/Tumor Suppressor/Other!!Presumed Mechanism (LOF/GOF/Other; Driver/Passenger)!!Prevalence (COSMIC/TCGA/Other)
!Gene!!Mutation!!Oncogene/Tumor Suppressor/Other!!Presumed Mechanism (LOF/GOF/Other; Driver/Passenger)!!Prevalence (COSMIC/TCGA/Other)
|-
|-
|''JAK2''||V617F||Oncogene||GOF||72%<ref name=":1" />, 65%<ref name=":4" />
|''JAK2''||V617F||Oncogene||GOF||72%<ref name=":1" />, 65%<ref name=":4">{{Cite journal|last=Rumi|first=Elisa|last2=Boveri|first2=Emanuela|last3=Bellini|first3=Marta|last4=Pietra|first4=Daniela|last5=Ferretti|first5=Virginia V.|last6=Sant'Antonio|first6=Emanuela|last7=Cavalloni|first7=Chiara|last8=Casetti|first8=Ilaria C.|last9=Roncoroni|first9=Elisa|date=2017-11-24|title=Clinical course and outcome of essential thrombocythemia and prefibrotic myelofibrosis according to the revised WHO 2016 diagnostic criteria|url=https://pubmed.ncbi.nlm.nih.gov/29254200|journal=Oncotarget|volume=8|issue=60|pages=101735–101744|doi=10.18632/oncotarget.21594|issn=1949-2553|pmc=5731910|pmid=29254200}}</ref>
|-
|-
|''MPL''
|''MPL''
Line 275: Line 319:
!Type!!Gene/Region/Other
!Type!!Gene/Region/Other
|-
|-
|Concomitant Mutations||EXAMPLE IDH1 R123H
|Concomitant Mutations||<span class="blue-text">EXAMPLE:</span> IDH1 R123H
|-
|-
|Secondary Mutations||EXAMPLE Trisomy 7
|Secondary Mutations||<span class="blue-text">EXAMPLE:</span> Trisomy 7
|-
|-
|Mutually Exclusive||EXAMPLE EGFR Amplification
|Mutually Exclusive||<span class="blue-text">EXAMPLE:</span> EGFR Amplification
|}
|}


<blockquote class="blockedit">
<center><span style="color:Maroon">'''End of V4 Section'''</span>
----
</blockquote>
</blockquote>
==Epigenomic Alterations==
==Epigenomic Alterations==


Put your text here
Put your text here
==Genes and Main Pathways Involved==


==Genes and Main Pathways Involved==


Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Can include references in the table.'')</span>
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Please include references throughout the table. Do not delete the table.)''</span>
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome
|-
|-
|EXAMPLE: BRAF and MAP2K1; Activating mutations
|<span class="blue-text">EXAMPLE:</span> ''BRAF'' and ''MAP2K1''; Activating mutations
|EXAMPLE: MAPK signaling
|<span class="blue-text">EXAMPLE:</span> MAPK signaling
|EXAMPLE: Increased cell growth and proliferation
|<span class="blue-text">EXAMPLE:</span> Increased cell growth and proliferation
|-
|<span class="blue-text">EXAMPLE:</span> ''CDKN2A''; Inactivating mutations
|<span class="blue-text">EXAMPLE:</span> Cell cycle regulation
|<span class="blue-text">EXAMPLE:</span> Unregulated cell division
|-
|-
|EXAMPLE: CDKN2A; Inactivating mutations
|<span class="blue-text">EXAMPLE:</span> ''KMT2C'' and ''ARID1A''; Inactivating mutations
|EXAMPLE: Cell cycle regulation
|<span class="blue-text">EXAMPLE:</span> Histone modification, chromatin remodeling
|EXAMPLE: Unregulated cell division
|<span class="blue-text">EXAMPLE:</span> Abnormal gene expression program
|-
|-
|EXAMPLE:  KMT2C and ARID1A; Inactivating mutations
|
|EXAMPLE:  Histone modification, chromatin remodeling
|
|EXAMPLE:  Abnormal gene expression program
|
|}
|}


<blockquote class='blockedit'>{{Box-round|title=v4:Genes and Main Pathways Involved|The content below was from the old template. Please incorporate above.}}
<blockquote class="blockedit">{{Box-round|title=v4:Genes and Main Pathways Involved|The content below was from the old template. Please incorporate above.}}</blockquote>


Mutations in ''JAK2'', ''CALR'', and ''MPL'' lead to constitutive activation of the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway. ''JAK2'' V617F mutations affect signalling through the EPOR, MPL, and G-CSFR homodimeric receptors while ''CALR'' and ''MPL'' mutations affect signalling through MPL only<ref>{{Cite journal|last=Vainchenker|first=William|last2=Kralovics|first2=Robert|date=02 09, 2017|title=Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms|url=https://pubmed.ncbi.nlm.nih.gov/28028029|journal=Blood|volume=129|issue=6|pages=667–679|doi=10.1182/blood-2016-10-695940|issn=1528-0020|pmid=28028029}}</ref>.
Mutations in ''JAK2'', ''CALR'', and ''MPL'' lead to constitutive activation of the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway. ''JAK2'' V617F mutations affect signalling through the EPOR, MPL, and G-CSFR homodimeric receptors while ''CALR'' and ''MPL'' mutations affect signalling through MPL only<ref>{{Cite journal|last=Vainchenker|first=William|last2=Kralovics|first2=Robert|date=02 09, 2017|title=Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms|url=https://pubmed.ncbi.nlm.nih.gov/28028029|journal=Blood|volume=129|issue=6|pages=667–679|doi=10.1182/blood-2016-10-695940|issn=1528-0020|pmid=28028029}}</ref>.


<blockquote class="blockedit">
<center><span style="color:Maroon">'''End of V4 Section'''</span>
----
</blockquote>
</blockquote>
==Genetic Diagnostic Testing Methods==
==Genetic Diagnostic Testing Methods==
Line 317: Line 372:


==Familial Forms==
==Familial Forms==


Put your text here <span style="color:#0070C0">(''Instructions: Include associated hereditary conditions/syndromes that cause this entity or are caused by this entity.'') </span>
Put your text here <span style="color:#0070C0">(''Instructions: Include associated hereditary conditions/syndromes that cause this entity or are caused by this entity.'') </span>
==Additional Information==
==Additional Information==


Line 329: Line 384:


==References==
==References==
(use the "Cite" icon at the top of the page) <span style="color:#0070C0">(''Instructions: Add each reference into the text above by clicking on where you want to insert the reference, selecting the “Cite” icon at the top of the page, and using the “Automatic” tab option to search such as by PMID to select the reference to insert. The reference list in this section will be automatically generated and sorted.''</span> <span style="color:#0070C0">''If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference''</span><span style="color:#0070C0">''.''</span><span style="color:#0070C0">) </span> <references />
(use the "Cite" icon at the top of the page) <span style="color:#0070C0">(''Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted''</span><span style="color:#0070C0">''.''</span><span style="color:#0070C0">)</span> <references />


'''
<br />


==Notes==
==Notes==
<nowiki>*</nowiki>Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage)Additional global feedback or concerns are also welcome.
<nowiki>*</nowiki>Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the [[Leadership|''<u>Associate Editor</u>'']] or other CCGA representativeWhen pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author.
 
Prior Author(s): 


       
<nowiki>*</nowiki>''Citation of this Page'': “Myeloproliferative neoplasm, NOS”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:Myeloproliferative_neoplasm,_NOS</nowiki>.
<nowiki>*</nowiki>''Citation of this Page'': “Myeloproliferative neoplasm, NOS”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:Myeloproliferative_neoplasm,_NOS</nowiki>.
==Other Sections==
[[Category:HAEM5]]
Primary Author(s)
[[Category:DISEASE]]
 
[[Category:Diseases M]]
Thomas Lee, MD, PhD, University of California, Los Angeles
 
__TOC__
 
[[Category:HAEM5]][[Category:DISEASE]][[Category:Diseases M]]

Latest revision as of 12:24, 3 July 2025

Haematolymphoid Tumours (WHO Classification, 5th ed.)

editContent Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification
This page was converted to the new template on 2023-12-07. The original page can be found at HAEM4:Myeloproliferative Neoplasm (MPN), Unclassifiable.

(General Instructions – The focus of these pages is the clinically significant genetic alterations in each disease type. This is based on up-to-date knowledge from multiple resources such as PubMed and the WHO classification books. The CCGA is meant to be a supplemental resource to the WHO classification books; the CCGA captures in a continually updated wiki-stye manner the current genetics/genomics knowledge of each disease, which evolves more rapidly than books can be revised and published. If the same disease is described in multiple WHO classification books, the genetics-related information for that disease will be consolidated into a single main page that has this template (other pages would only contain a link to this main page). Use HUGO-approved gene names and symbols (italicized when appropriate), HGVS-based nomenclature for variants, as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column in a table, click nearby within the table and select the > symbol that appears. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see Author_Instructions and FAQs as well as contact your Associate Editor or Technical Support.)

Primary Author(s)*

Thomas Lee, MD, PhD, University of California, Los Angeles

WHO Classification of Disease

Structure Disease
Book Haematolymphoid Tumours (5th ed.)
Category Myeloid proliferations and neoplasms
Family Myeloproliferative neoplasms
Type Myeloproliferative neoplasms
Subtype(s) Myeloproliferative neoplasm, NOS

Related Terminology

Acceptable Myeloproliferative neoplasm, unclassifiable
Not Recommended N/A

Gene Rearrangements

Put your text here and fill in the table (Instructions: Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.)

Driver Gene Fusion(s) and Common Partner Genes Molecular Pathogenesis Typical Chromosomal Alteration(s) Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease) Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE: ABL1 EXAMPLE: BCR::ABL1 EXAMPLE: The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1. EXAMPLE: t(9;22)(q34;q11.2) EXAMPLE: Common (CML) EXAMPLE: D, P, T EXAMPLE: Yes (WHO, NCCN) EXAMPLE:

The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference).

EXAMPLE: CIC EXAMPLE: CIC::DUX4 EXAMPLE: Typically, the last exon of CIC is fused to DUX4. The fusion breakpoint in CIC is usually intra-exonic and removes an inhibitory sequence, upregulating PEA3 genes downstream of CIC including ETV1, ETV4, and ETV5. EXAMPLE: t(4;19)(q25;q13) EXAMPLE: Common (CIC-rearranged sarcoma) EXAMPLE: D EXAMPLE:

DUX4 has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references).

EXAMPLE: ALK EXAMPLE: ELM4::ALK


Other fusion partners include KIF5B, NPM1, STRN, TFG, TPM3, CLTC, KLC1

EXAMPLE: Fusions result in constitutive activation of the ALK tyrosine kinase. The most common ALK fusion is EML4::ALK, with breakpoints in intron 19 of ALK. At the transcript level, a variable (5’) partner gene is fused to 3’ ALK at exon 20. Rarely, ALK fusions contain exon 19 due to breakpoints in intron 18. EXAMPLE: N/A EXAMPLE: Rare (Lung adenocarcinoma) EXAMPLE: T EXAMPLE:

Both balanced and unbalanced forms are observed by FISH (add references).

EXAMPLE: ABL1 EXAMPLE: N/A EXAMPLE: Intragenic deletion of exons 2–7 in EGFR removes the ligand-binding domain, resulting in a constitutively active tyrosine kinase with downstream activation of multiple oncogenic pathways. EXAMPLE: N/A EXAMPLE: Recurrent (IDH-wildtype Glioblastoma) EXAMPLE: D, P, T
editv4:Chromosomal Rearrangements (Gene Fusions)
The content below was from the old template. Please incorporate above.

There are no associated chromosomal rearrangements. There should be no BCR-ABL1 or PCM1-JAK2 fusion and no PDGFRA, PDGFRB, or FGFR1 rearrangement. Rearrangements that have been reported include t(4;12)(q12;p13)[1].

End of V4 Section


editv4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).
Please incorporate this section into the relevant tables found in:
  • Chromosomal Rearrangements (Gene Fusions)
  • Individual Region Genomic Gain/Loss/LOH
  • Characteristic Chromosomal Patterns
  • Gene Mutations (SNV/INDEL)

Follow-up studies on a 6 - 12 month interval can provide additional information for classification[2].

End of V4 Section

Individual Region Genomic Gain/Loss/LOH

Put your text here and fill in the table (Instructions: Includes aberrations not involving gene rearrangements. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Can refer to CGC workgroup tables as linked on the homepage if applicable. Please include references throughout the table. Do not delete the table.)

Chr # Gain, Loss, Amp, LOH Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size] Relevant Gene(s) Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE:

7

EXAMPLE: Loss EXAMPLE:

chr7

EXAMPLE:

Unknown

EXAMPLE: D, P EXAMPLE: No EXAMPLE:

Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add references).

EXAMPLE:

8

EXAMPLE: Gain EXAMPLE:

chr8

EXAMPLE:

Unknown

EXAMPLE: D, P EXAMPLE:

Common recurrent secondary finding for t(8;21) (add references).

EXAMPLE:

17

EXAMPLE: Amp EXAMPLE:

17q12; chr17:39,700,064-39,728,658 [hg38; 28.6 kb]

EXAMPLE:

ERBB2

EXAMPLE: D, P, T EXAMPLE:

Amplification of ERBB2 is associated with HER2 overexpression in HER2 positive breast cancer (add references). Add criteria for how amplification is defined.

editv4:Genomic Gain/Loss/LOH
The content below was from the old template. Please incorporate above.

There are no characteristic genomic gain/loss/LOH.

End of V4 Section

Characteristic Chromosomal or Other Global Mutational Patterns

Put your text here and fill in the table (Instructions: Included in this category are alterations such as hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis; microsatellite instability; homologous recombination deficiency; mutational signature pattern; etc. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.)

Chromosomal Pattern Molecular Pathogenesis Prevalence -

Common >20%, Recurrent 5-20% or Rare <5% (Disease)

Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE:

Co-deletion of 1p and 18q

EXAMPLE: See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). EXAMPLE: Common (Oligodendroglioma) EXAMPLE: D, P
EXAMPLE:

Microsatellite instability - hypermutated

EXAMPLE: Common (Endometrial carcinoma) EXAMPLE: P, T
editv4:Characteristic Chromosomal Aberrations / Patterns
The content below was from the old template. Please incorporate above.

There are no characteristic chromosomal aberrations/patterns. Cytogenetic abnormalities have been described in four (5.6%) of 71 2008 WHO diagnosed cases[3] and one (20%) of five 2016 WHO diagnosed cases[4]. Chromosomal aberrations that have been reported include trisomy 8[3] and 46,XY,inv(12)(q15q24.1)[4].

End of V4 Section

Gene Mutations (SNV/INDEL)

Put your text here and fill in the table (Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent or common as well either disease defining and/or clinically significant. If a gene has multiple mechanisms depending on the type or site of the alteration, add multiple entries in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Details on clinical significance such as prognosis and other important information such as concomitant and mutually exclusive mutations can be provided in the notes section. Please include references throughout the table. Do not delete the table.)

Gene Genetic Alteration Tumor Suppressor Gene, Oncogene, Other Prevalence -

Common >20%, Recurrent 5-20% or Rare <5% (Disease)

Diagnostic, Prognostic, and Therapeutic Significance - D, P, T   Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE:EGFR


EXAMPLE: Exon 18-21 activating mutations EXAMPLE: Oncogene EXAMPLE: Common (lung cancer) EXAMPLE: T EXAMPLE: Yes (NCCN) EXAMPLE: Exons 18, 19, and 21 mutations are targetable for therapy. Exon 20 T790M variants cause resistance to first generation TKI therapy and are targetable by second and third generation TKIs (add references).
EXAMPLE: TP53; Variable LOF mutations


EXAMPLE: Variable LOF mutations EXAMPLE: Tumor Supressor Gene EXAMPLE: Common (breast cancer) EXAMPLE: P EXAMPLE: >90% are somatic; rare germline alterations associated with Li-Fraumeni syndrome (add reference). Denotes a poor prognosis in breast cancer.
EXAMPLE: BRAF; Activating mutations EXAMPLE: Activating mutations EXAMPLE: Oncogene EXAMPLE: Common (melanoma) EXAMPLE: T

Note: A more extensive list of mutations can be found in cBioportal, COSMIC, and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.

editv4:Gene Mutations (SNV/INDEL)
The content below was from the old template. Please incorporate above.

Mutations in JAK2, MPL, and CALR are recurrent. A subset of cases have been reported to be negative for mutations in these three genes (i.e. triple negative). Limited studies have reported mutations in other genes including ASXL1[4] and ZRSR2[4][1].

Gene Mutation Oncogene/Tumor Suppressor/Other Presumed Mechanism (LOF/GOF/Other; Driver/Passenger) Prevalence (COSMIC/TCGA/Other)
JAK2 V617F Oncogene GOF 72%[3], 65%[5]
MPL W515L, Exon 10 Oncogene GOF 3%[3], 4%[5]
CALR Type 1/Type 2/Other Oncogene GOF 11%[3], 60%[4], 27%[5]
Triple Negative N/A N/A N/A 3%[3], 4%[5]

Other Mutations

Type Gene/Region/Other
Concomitant Mutations EXAMPLE: IDH1 R123H
Secondary Mutations EXAMPLE: Trisomy 7
Mutually Exclusive EXAMPLE: EGFR Amplification
End of V4 Section

Epigenomic Alterations

Put your text here

Genes and Main Pathways Involved

Put your text here and fill in the table (Instructions: Please include references throughout the table. Do not delete the table.)

Gene; Genetic Alteration Pathway Pathophysiologic Outcome
EXAMPLE: BRAF and MAP2K1; Activating mutations EXAMPLE: MAPK signaling EXAMPLE: Increased cell growth and proliferation
EXAMPLE: CDKN2A; Inactivating mutations EXAMPLE: Cell cycle regulation EXAMPLE: Unregulated cell division
EXAMPLE: KMT2C and ARID1A; Inactivating mutations EXAMPLE: Histone modification, chromatin remodeling EXAMPLE: Abnormal gene expression program
editv4:Genes and Main Pathways Involved
The content below was from the old template. Please incorporate above.

Mutations in JAK2, CALR, and MPL lead to constitutive activation of the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway. JAK2 V617F mutations affect signalling through the EPOR, MPL, and G-CSFR homodimeric receptors while CALR and MPL mutations affect signalling through MPL only[6].

End of V4 Section

Genetic Diagnostic Testing Methods

Mutations in JAK2 V617F, CALR, and MPL can be detected through various molecular testing methodologies including allele specific PCR based methods, capillary electrophoresis fragment analysis, and/or next generation sequencing.

Familial Forms

Put your text here (Instructions: Include associated hereditary conditions/syndromes that cause this entity or are caused by this entity.)

Additional Information

Put your text here

Links

Put your links here (use link icon at top of page)

References

(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted.)

  1. 1.0 1.1 Zhang, Ling; et al. (2020-10). "Identification of a novel ETV6 truncated fusion gene in myeloproliferative neoplasm, unclassifiable with t(4;12)(q12;p13)". Annals of Hematology. 99 (10): 2445–2447. doi:10.1007/s00277-020-04207-y. ISSN 1432-0584. PMID 32734549 Check |pmid= value (help). Check date values in: |date= (help)
  2. Kvasnicka HM, et al., (2017). Myeloproliferative neoplasm, unclassifiable, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. IARC Press: Lyon, France, p129-171.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 Gianelli U, Cattaneo D, Bossi A, Cortinovis I, Boiocchi L, Liu YC, Augello C, Bonometti A, Fiori S, Orofino N, Guidotti F, Orazi A, Iurlo A. The myeloproliferative neoplasms, unclassifiable: clinical and pathological considerations. Mod Pathol. 2017 Feb;30(2):169-179. doi: 10.1038/modpathol.2016.182. Epub 2016 Oct 14. Erratum in: Mod Pathol. 2017 Jul;30(7):1043. PMID: 27739437.
  4. 4.0 4.1 4.2 4.3 4.4 Yun, Jiwon; et al. (2020-09-02). "Reclassification of subtypes in Philadelphia chromosome-negative myeloproliferative neoplasm by 2016 WHO diagnostic criteria: focus on the cases classified as myeloproliferative neoplasm, unclassifiable by the 2008 version". Leukemia & Lymphoma: 1–5. doi:10.1080/10428194.2020.1808212. ISSN 1029-2403. PMID 32876501 Check |pmid= value (help).
  5. 5.0 5.1 5.2 5.3 Rumi, Elisa; et al. (2017-11-24). "Clinical course and outcome of essential thrombocythemia and prefibrotic myelofibrosis according to the revised WHO 2016 diagnostic criteria". Oncotarget. 8 (60): 101735–101744. doi:10.18632/oncotarget.21594. ISSN 1949-2553. PMC 5731910. PMID 29254200.
  6. Vainchenker, William; et al. (02 09, 2017). "Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms". Blood. 129 (6): 667–679. doi:10.1182/blood-2016-10-695940. ISSN 1528-0020. PMID 28028029. Check date values in: |date= (help)


Notes

*Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the Associate Editor or other CCGA representative.  When pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author.

Prior Author(s):


*Citation of this Page: “Myeloproliferative neoplasm, NOS”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 07/3/2025, https://ccga.io/index.php/HAEM5:Myeloproliferative_neoplasm,_NOS.