HAEM5:Acute myeloid leukaemia with CEBPA mutation: Difference between revisions

[checked revision][pending revision]
No edit summary
No edit summary
 
(16 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{DISPLAYTITLE:Acute myeloid leukaemia with CEBPA mutation}}
{{DISPLAYTITLE:Acute myeloid leukaemia with CEBPA mutation}}
[[HAEM5:Table_of_Contents|Haematolymphoid Tumours (5th ed.)]]
 
[[HAEM5:Table_of_Contents|Haematolymphoid Tumours (WHO Classification, 5th ed.)]]


{{Under Construction}}
{{Under Construction}}


<blockquote class='blockedit'>{{Box-round|title=HAEM5 Conversion Notes|This page was converted to the new template on 2023-12-07. The original page can be found at [[HAEM4:Acute Myeloid Leukemia (AML) with Biallelic Mutations of CEBPA]].
<blockquote class="blockedit">{{Box-round|title=Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification|This page was converted to the new template on 2023-12-07. The original page can be found at [[HAEM4:Acute Myeloid Leukemia (AML) with Biallelic Mutations of CEBPA]].
}}</blockquote>
}}</blockquote>


<span style="color:#0070C0">(General Instructions – The main focus of these pages is the clinically significant genetic alterations in each disease type. Use [https://www.genenames.org/ <u>HUGO-approved gene names and symbols</u>] (italicized when appropriate), [https://varnomen.hgvs.org/ HGVS-based nomenclature for variants], as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples). Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see </span><u>[[Author_Instructions]]</u><span style="color:#0070C0"> and [[Frequently Asked Questions (FAQs)|<u>FAQs</u>]] as well as contact your [[Leadership|<u>Associate Editor</u>]] or [mailto:CCGA@cancergenomics.org <u>Technical Support</u>])</span>
<span style="color:#0070C0">(General Instructions – The focus of these pages is the clinically significant genetic alterations in each disease type. This is based on up-to-date knowledge from multiple resources such as PubMed and the WHO classification books. The CCGA is meant to be a supplemental resource to the WHO classification books; the CCGA captures in a continually updated wiki-stye manner the current genetics/genomics knowledge of each disease, which evolves more rapidly than books can be revised and published. If the same disease is described in multiple WHO classification books, the genetics-related information for that disease will be consolidated into a single main page that has this template (other pages would only contain a link to this main page). Use [https://www.genenames.org/ <u>HUGO-approved gene names and symbols</u>] (italicized when appropriate), [https://varnomen.hgvs.org/ <u>HGVS-based nomenclature for variants</u>], as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column in a table, click nearby within the table and select the > symbol that appears. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see </span><u>[[Author_Instructions]]</u><span style="color:#0070C0"> and [[Frequently Asked Questions (FAQs)|<u>FAQs</u>]] as well as contact your [[Leadership|<u>Associate Editor</u>]] or [mailto:CCGA@cancergenomics.org <u>Technical Support</u>].)</span>


==Primary Author(s)*==
==Primary Author(s)*==


Paul Defazio, MSc, Monash Health
Xinxiu Xu, Vanderbilt University Medical Center
 
==WHO Classification of Disease==
__TOC__
 
==Cancer Category / Type==
 
Acute Myeloid Leukemia (AML)
 
==Cancer Sub-Classification / Subtype==
 
Acute myeloid leukaemia (AML) with biallelic CEBPA mutations
 
==Definition / Description of Disease==
 
AML with biallelic ''CEBPA'' (CCAT/Enhancer Binding Protein Alpha) mutations is a distinct disease entity in the 2016 World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia<ref name=":0">Arber DA, et al., (2017). Acute myeloid leukaemia with recurrent genetic abnormalities, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. Revised 4th Edition. IARC Press: Lyon, France, p142-144.</ref>.
 
Mutations in ''CEBPA'' have been divided into two types<ref name=":1">{{Cite journal|last=Pabst|first=T.|last2=Mueller|first2=B. U.|date=2007|title=Transcriptional dysregulation during myeloid transformation in AML|url=https://www.ncbi.nlm.nih.gov/pubmed/17934489|journal=Oncogene|volume=26|issue=47|pages=6829–6837|doi=10.1038/sj.onc.1210765|issn=0950-9232|pmid=17934489}}</ref>. Firstly, frameshift mutations in the N-terminal region trans-activating domain (TAD) between the alternative translation initiation sites can abolish expression of the larger isoform by introducing premature stop codons; this results in overexpression of the shorter isoform, which appears to have a dominant negative effect on the larger CEPBA protein. Secondly, in-frame C-terminal mutations in the bZIP domain reduce the DNA-binding potential of CEBPA and its ability to dimerise with other CEBP family members.
Most ''CEBPA''-mutated AMLs exhibit more than one mutation<ref name=":1" />. Compound heterozygous mutations affecting both the N-terminal and C-terminal regions of the CEBPA protein are associated with favorable clinical outcome in the context of AML, in the absence of complex karyotype or ''FLT3'' internal tandem duplications. Only biallelic ''CEBPA'' mutations are prognostically significant; monoallelic mutations do not have prognostic implications<ref>{{Cite journal|last=Wouters|first=Bas J.|last2=Löwenberg|first2=Bob|last3=Erpelinck-Verschueren|first3=Claudia A. J.|last4=van Putten|first4=Wim L. J.|last5=Valk|first5=Peter J. M.|last6=Delwel|first6=Ruud|date=2009|title=Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome|url=https://www.ncbi.nlm.nih.gov/pubmed/19171880|journal=Blood|volume=113|issue=13|pages=3088–3091|doi=10.1182/blood-2008-09-179895|issn=1528-0020|pmc=2662648|pmid=19171880}}</ref>.
 
==Synonyms / Terminology==
 
None
 
==Epidemiology / Prevalence==
 
Approximately 6-15% of de novo AML and 15-18% of AML with normal karyotypes have monoallelic or biallelic ''CEBPA'' mutations<ref name=":0" /><ref name=":2">{{Cite journal|last=Taskesen|first=Erdogan|last2=Bullinger|first2=Lars|last3=Corbacioglu|first3=Andrea|last4=Sanders|first4=Mathijs A.|last5=Erpelinck|first5=Claudia A. J.|last6=Wouters|first6=Bas J.|last7=van der Poel-van de Luytgaarde|first7=Sonja C.|last8=Damm|first8=Frederik|last9=Krauter|first9=Jürgen|date=2011|title=Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity|url=https://www.ncbi.nlm.nih.gov/pubmed/21177436|journal=Blood|volume=117|issue=8|pages=2469–2475|doi=10.1182/blood-2010-09-307280|issn=1528-0020|pmid=21177436}}</ref>. There does not appear to be age or gender differences between ''CEBPA'' mutated and non-mutated AML.
Inherited heterozygous ''CEBPA'' mutations have also been linked to familial AML<ref name=":3">{{Cite journal|last=Smith|first=Matthew L.|last2=Cavenagh|first2=Jamie D.|last3=Lister|first3=T. Andrew|last4=Fitzgibbon|first4=Jude|date=2004|title=Mutation of CEBPA in familial acute myeloid leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/15575056|journal=The New England Journal of Medicine|volume=351|issue=23|pages=2403–2407|doi=10.1056/NEJMoa041331|issn=1533-4406|pmid=15575056}}</ref>. Inherited ''CEBPA'' are associated with earlier-onset AML. Taskesen et al. reported that five of 71 (7%) ''CEBPA''-mutant AML patients carried germline mutations<ref name=":2" />.
 
==Clinical Features==


Put your text here and fill in the table <span style="color:#0070C0">(''Instruction: Can include references in the table'') </span>
{| class="wikitable"
{| class="wikitable"
|'''Signs and Symptoms'''
!Structure
|EXAMPLE Asymptomatic (incidental finding on complete blood counts)
!Disease
 
EXAMPLE B-symptoms (weight loss, fever, night sweats)
 
EXAMPLE Fatigue
 
EXAMPLE Lymphadenopathy (uncommon)
|-
|'''Laboratory Findings'''
|EXAMPLE Cytopenias
 
EXAMPLE Lymphocytosis (low level)
|}
 
 
<blockquote class='blockedit'>{{Box-round|title=v4:Clinical Features|The content below was from the old template. Please incorporate above.}}
 
AML with mutated ''CEBPA'' tends to have higher haemoglobin levels, lower platelet counts, lower lactate dehydrogenase levels and higher PB blast cell counts compared to ''CEBPA'' non-mutated AML<ref name=":0" />. There is also a lower frequency of lymphadenopathy and myeloid sarcoma in ''CEBPA'' mutated AML than in non-mutated AML<ref name=":0" />.
 
</blockquote>
==Sites of Involvement==
 
Blood, bone marrow
 
==Morphologic Features==
 
There are no distinctive morphological features of AML with ''CEBPA'' mutations. The vast majority of cases have features of AML with maturation or AML without maturation. Cases with monocytic or myelomonocytic features are less common.
 
==Immunophenotype==
 
Like in ''CEBPA'' wild-type AML, leukemic blasts usually express one or more of the myeloid-associated antigens CD13, CD33, CD65, CD11b, and CD15. HLA-DR and CD34 are also usually expressed on the majority of blasts. CD7, CD15, CD34, and HLA-DR expression are found in significantly more patients with biallelic ''CEBPA'' mutations than in unmutated patients<ref>{{Cite journal|last=Lin|first=Liang-In|last2=Chen|first2=Chien-Yuan|last3=Lin|first3=Dong-Tsamn|last4=Tsay|first4=Woei|last5=Tang|first5=Jih-Luh|last6=Yeh|first6=You-Chia|last7=Shen|first7=Hwei-Ling|last8=Su|first8=Fang-Hsien|last9=Yao|first9=Ming|date=2005|title=Characterization of CEBPA mutations in acute myeloid leukemia: most patients with CEBPA mutations have biallelic mutations and show a distinct immunophenotype of the leukemic cells|url=https://www.ncbi.nlm.nih.gov/pubmed/15746035|journal=Clinical Cancer Research: An Official Journal of the American Association for Cancer Research|volume=11|issue=4|pages=1372–1379|doi=10.1158/1078-0432.CCR-04-1816|issn=1078-0432|pmid=15746035}}</ref>.
Monocytic markers such as CD14 and CD64 are usually not expressed in AML with biallelic ''CEBPA'' mutations. Expression of CD56 and other lymphoid antigens is also uncommon.
 
{| class="wikitable sortable"
|-
|-
!Finding!!Marker
|Book
|Haematolymphoid Tumours (5th ed.)
|-
|-
|Positive (universal)||EXAMPLE CD1
|Category
|Myeloid proliferations and neoplasms
|-
|-
|Positive (subset)||EXAMPLE CD2
|Family
|Acute myeloid leukaemia
|-
|-
|Negative (universal)||EXAMPLE CD3
|Type
|Acute myeloid leukaemia with defining genetic abnormalities
|-
|-
|Negative (subset)||EXAMPLE CD4
|Subtype(s)
|Acute myeloid leukaemia with CEBPA mutation
|}
|}


==Chromosomal Rearrangements (Gene Fusions)==
==Related Terminology==


Put your text here and fill in the table
{| class="wikitable"
 
|+
{| class="wikitable sortable"
|Acceptable
|Acute myeloid leukaemia with biallelic mutation of CEBPA
|-
|-
!Chromosomal Rearrangement!!Genes in Fusion (5’ or 3’ Segments)!!Pathogenic Derivative!!Prevalence
|Not Recommended
!Diagnostic Significance (Yes, No or Unknown)
|N/A
!Prognostic Significance (Yes, No or Unknown)
|}
!Therapeutic Significance (Yes, No or Unknown)
!Notes
|-
|EXAMPLE t(9;22)(q34;q11.2)||EXAMPLE 3'ABL1 / 5'BCR||EXAMPLE der(22)||EXAMPLE 20% (COSMIC)
EXAMPLE 30% (add reference)
|Yes
|No
|Yes
|EXAMPLE
 
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference).
|}


<blockquote class='blockedit'>{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}}
==Gene Rearrangements==


None


None.
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
!Chromosomal Rearrangement!!Genes in Fusion (5’ or 3’ Segments)!!Pathogenic Derivative!!Prevalence
!Driver Gene!!Fusion(s) and Common Partner Genes!!Molecular Pathogenesis!!Typical Chromosomal Alteration(s)
!Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease)
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T
!Established Clinical Significance Per Guidelines - Yes or No (Source)
!Clinical Relevance Details/Other Notes
|-
|-
|EXAMPLE t(9;22)(q34;q11.2)||EXAMPLE 3'ABL1 / 5'BCR||EXAMPLE der(22)||EXAMPLE 5%
|<span class="blue-text">EXAMPLE:</span> ''ABL1''||<span class="blue-text">EXAMPLE:</span> ''BCR::ABL1''||<span class="blue-text">EXAMPLE:</span> The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1.||<span class="blue-text">EXAMPLE:</span> t(9;22)(q34;q11.2)
|<span class="blue-text">EXAMPLE:</span> Common (CML)
|<span class="blue-text">EXAMPLE:</span> D, P, T
|<span class="blue-text">EXAMPLE:</span> Yes (WHO, NCCN)
|<span class="blue-text">EXAMPLE:</span>
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference).
|-
|-
|EXAMPLE t(8;21)(q22;q22)||EXAMPLE 5'RUNX1 / 3'RUNXT1||EXAMPLE der(8)||EXAMPLE 5%
|<span class="blue-text">EXAMPLE:</span> ''CIC''
|}
|<span class="blue-text">EXAMPLE:</span> ''CIC::DUX4''
|<span class="blue-text">EXAMPLE:</span> Typically, the last exon of ''CIC'' is fused to ''DUX4''. The fusion breakpoint in ''CIC'' is usually intra-exonic and removes an inhibitory sequence, upregulating ''PEA3'' genes downstream of ''CIC'' including ''ETV1'', ''ETV4'', and ''ETV5''.
</blockquote>
|<span class="blue-text">EXAMPLE:</span> t(4;19)(q25;q13)
|<span class="blue-text">EXAMPLE:</span> Common (CIC-rearranged sarcoma)
|<span class="blue-text">EXAMPLE:</span> D
|
|<span class="blue-text">EXAMPLE:</span>


''DUX4'' has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references).
|-
|
|
|
|
|
|
|
|
|}
==Individual Region Genomic Gain/Loss/LOH==


<blockquote class='blockedit'>{{Box-round|title=v4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).|Please incorporate this section into the relevant tables found in:
* Chromosomal Rearrangements (Gene Fusions)
* Individual Region Genomic Gain/Loss/LOH
* Characteristic Chromosomal Patterns
* Gene Mutations (SNV/INDEL)}}
Patients with biallelic ''CEBPA'' mutations and a normal karyotype have a more favorable prognosis than those with monoallelic or no ''CEBPA'' mutations, with higher complete remission rates and longer disease-free survival, relapse-free survival, event-free survival, and overall survival<ref name=":0" />.
Patients with abnormal karyotypes (but not complex karyotypes) and biallelic ''CEBPA'' mutations also have longer disease-free survival, event-free survival, and overall survival when compared to patients with monoallelic or no ''CEBPA'' mutations<ref name=":0" />.
</blockquote>
==Individual Region Genomic Gain / Loss / LOH==
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable.'') </span>


Subset of cases have abnormal karyotype, del(9q) is common but does not make a diagnosis of AML with myelodysplasia related changes<ref name=":6">{{Cite journal|last=Frohling|first=Stefan|last2=Schlenk|first2=Richard F.|last3=Krauter|first3=Jurgen|last4=Ganser|first4=Arnold|last5=Thiede|first5=Christian|last6=Ehninger|first6=Gerhard|last7=Haase|first7=Detlef|last8=Harder|first8=Lana|last9=Scholl|first9=Claudia|date=2004-11-16|title=Acute Myeloid Leukemia with Deletion 9q Is Associated with CEBPA Loss-of-Function Mutations.|url=https://www.sciencedirect.com/science/article/pii/S0006497118667941|journal=Blood|volume=104|issue=11|pages=2896|doi=10.1182/blood.V104.11.2896.2896|issn=0006-4971}}</ref><ref name=":7">{{Cite journal|last=Fröhling|first=Stefan|last2=Schlenk|first2=Richard F.|last3=Krauter|first3=Jürgen|last4=Thiede|first4=Christian|last5=Ehninger|first5=Gerhard|last6=Haase|first6=Detlef|last7=Harder|first7=Lana|last8=Kreitmeier|first8=Sylvia|last9=Scholl|first9=Claudia|date=2005|title=Acute myeloid leukemia with deletion 9q within a noncomplex karyotype is associated with CEBPA loss-of-function mutations|url=https://onlinelibrary.wiley.com/doi/10.1002/gcc.20152|journal=Genes, Chromosomes and Cancer|language=en|volume=42|issue=4|pages=427–432|doi=10.1002/gcc.20152|issn=1098-2264}}</ref>.
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
!Chr #!!Gain / Loss / Amp / LOH!!Minimal Region Genomic Coordinates [Genome Build]!!Minimal Region Cytoband
!Chr #!!Gain, Loss, Amp, LOH!!Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size]!!Relevant Gene(s)
!Diagnostic Significance (Yes, No or Unknown)
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T
!Prognostic Significance (Yes, No or Unknown)
!Established Clinical Significance Per Guidelines - Yes or No (Source)
!Therapeutic Significance (Yes, No or Unknown)
!Clinical Relevance Details/Other Notes
!Notes
|-
|EXAMPLE
 
7
|EXAMPLE Loss
|EXAMPLE
 
chr7:1- 159,335,973 [hg38]
|EXAMPLE
 
chr7
|Yes
|Yes
|No
|EXAMPLE
 
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference).
|-
|-
|EXAMPLE
|9
 
|Loss
8
|9q
|EXAMPLE Gain
|Unknown
|EXAMPLE
|P
 
chr8:1-145,138,636 [hg38]
|EXAMPLE
 
chr8
|No
|No
|No
|No
|EXAMPLE
|A collaborative intergroup study has been initiated to define whether the relatively good prognosis associated with del(9q) is related to the presence of a ''CEBPA'' mutation<ref name=":6" />.
 
Common recurrent secondary finding for t(8;21) (add reference).
|}
|}
==Characteristic Chromosomal or Other Global Mutational Patterns==


<blockquote class='blockedit'>{{Box-round|title=v4:Genomic Gain/Loss/LOH|The content below was from the old template. Please incorporate above.}}
None


None.
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
!Chromosome Number!!Gain/Loss/Amp/LOH!!Region
!Chromosomal Pattern
!Molecular Pathogenesis
!Prevalence -
Common >20%, Recurrent 5-20% or Rare <5% (Disease)
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T
!Established Clinical Significance Per Guidelines - Yes or No (Source)
!Clinical Relevance Details/Other Notes
|-
|-
|EXAMPLE 8||EXAMPLE Gain||EXAMPLE chr8:0-1000000
|<span class="blue-text">EXAMPLE:</span> Co-deletion of 1p and 18q
|<span class="blue-text">EXAMPLE:</span> See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).
|<span class="blue-text">EXAMPLE:</span> Common (Oligodendroglioma)
|<span class="blue-text">EXAMPLE:</span> D, P
|
|
|-
|-
|EXAMPLE 7||EXAMPLE Loss||EXAMPLE chr7:0-1000000
|<span class="blue-text">EXAMPLE:</span>
|}
Microsatellite instability - hypermutated
|
</blockquote>
|<span class="blue-text">EXAMPLE:</span> Common (Endometrial carcinoma)
==Characteristic Chromosomal Patterns==
|<span class="blue-text">EXAMPLE:</span> P, T
 
|
Put your text here <span style="color:#0070C0">(''EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis'')</span>
|
 
{| class="wikitable sortable"
|-
|-
!Chromosomal Pattern
|
!Diagnostic Significance (Yes, No or Unknown)
|
!Prognostic Significance (Yes, No or Unknown)
|
!Therapeutic Significance (Yes, No or Unknown)
|
!Notes
|
|-
|
|EXAMPLE
 
Co-deletion of 1p and 18q
|Yes
|No
|No
|EXAMPLE:
 
See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).
|}
|}
==Gene Mutations (SNV/INDEL)==


<blockquote class='blockedit'>{{Box-round|title=v4:Characteristic Chromosomal Aberrations / Patterns|The content below was from the old template. Please incorporate above.}}
None
</blockquote>
==Gene Mutations (SNV / INDEL)==


Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity.'') </span>
Patients with biallelic ''CEBPA'' mutations and a normal karyotype have a more favorable prognosis than those with monoallelic or no ''CEBPA'' mutations, with higher complete remission rates and longer disease-free survival, relapse-free survival, event-free survival, and overall survival<ref name=":0">Arber DA, et al., (2017). Acute myeloid leukaemia with recurrent genetic abnormalities, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. Revised 4th Edition. IARC Press: Lyon, France, p142-144.</ref>.
Patients with abnormal karyotypes (but not complex karyotypes) and biallelic ''CEBPA'' mutations also have longer disease-free survival, event-free survival, and overall survival when compared to patients with monoallelic or no ''CEBPA'' mutations<ref name=":0" />. Detection of bi''CEBPA'' should raise possibility of germline mutation. Germline testing may be considered in patients with persistent ''CEBPA'' mutations following morphologic remission or in patients with family history of leukemia<ref name=":8">{{Cite journal|last=Tawana|first=Kiran|last2=Wang|first2=Jun|last3=Renneville|first3=Aline|last4=Bödör|first4=Csaba|last5=Hills|first5=Robert|last6=Loveday|first6=Chey|last7=Savic|first7=Aleksandar|last8=Van Delft|first8=Frederik W.|last9=Treleaven|first9=Jennifer|date=2015-09-03|title=Disease evolution and outcomes in familial AML with germline CEBPA mutations|url=https://pubmed.ncbi.nlm.nih.gov/26162409|journal=Blood|volume=126|issue=10|pages=1214–1223|doi=10.1182/blood-2015-05-647172|issn=1528-0020|pmid=26162409}}</ref>.


Pathogenic mutations in ''CEBPA'' are predominantly insertion/deletion frameshift mutations in the N-terminal TAD region and in-frame C-terminal bZIP mutations. Patients with bi''CEBPA'' and smbZIP-''CEBPA'' are younger and have higher white blood cell counts than those with a single mutation in the N-terminal TAD region<ref name=":5">{{Cite journal|last=Taube|first=Franziska|last2=Georgi|first2=Julia Annabell|last3=Kramer|first3=Michael|last4=Stasik|first4=Sebastian|last5=Middeke|first5=Jan Moritz|last6=Röllig|first6=Christoph|last7=Krug|first7=Utz|last8=Krämer|first8=Alwin|last9=Scholl|first9=Sebastian|date=2022-01-06|title=CEBPA mutations in 4708 patients with acute myeloid leukemia: differential impact of bZIP and TAD mutations on outcome|url=https://pubmed.ncbi.nlm.nih.gov/34320176|journal=Blood|volume=139|issue=1|pages=87–103|doi=10.1182/blood.2020009680|issn=1528-0020|pmid=34320176}}</ref>. No particular mutational hotspots exist but the following table records the most reported mutations in the COSMIC database (frequency based on a count out of 1523 mutations):
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
!Gene; Genetic Alteration!!'''Presumed Mechanism (Tumor Suppressor Gene [TSG] / Oncogene / Other)'''!!'''Prevalence (COSMIC /  TCGA / Other)'''!!'''Concomitant Mutations'''!!'''Mutually Exclusive Mutations'''
!Gene!!Genetic Alteration!!Tumor Suppressor Gene, Oncogene, Other!!Prevalence -
!'''Diagnostic Significance (Yes, No or Unknown)'''
Common >20%, Recurrent 5-20% or Rare <5% (Disease)
!Prognostic Significance (Yes, No or Unknown)
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T  
!Therapeutic Significance (Yes, No or Unknown)
!Established Clinical Significance Per Guidelines - Yes or No (Source)
!Notes
!Clinical Relevance Details/Other Notes
|-
|-
|EXAMPLE: TP53; Variable LOF mutations
|''CEBPA''
 
EXAMPLE:
 
EGFR; Exon 20 mutations
 
EXAMPLE: BRAF; Activating mutations
|EXAMPLE: TSG
|EXAMPLE: 20% (COSMIC)


EXAMPLE: 30% (add Reference)
|EXAMPLE: IDH1 R123H
|EXAMPLE: EGFR amplification
|
|
|
|EXAMPLE:  Excludes hairy cell leukemia (HCL) (add reference).
<br />
<br />
|}
|c.939_940insAAG, p.K313_V314insK
Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
|Oncogene
|Recurrent (AML)
|D, P, T
|Yes (NCCN)
|AML with ''CEBPA'' mutation constitutes ~5% pf pediatric AML and 5-11% adult AML<ref name=":9">{{Cite journal|last=Tarlock|first=Katherine|last2=Lamble|first2=Adam J.|last3=Wang|first3=Yi-Cheng|last4=Gerbing|first4=Robert B.|last5=Ries|first5=Rhonda E.|last6=Loken|first6=Michael R.|last7=Brodersen|first7=Lisa Eidenschink|last8=Pardo|first8=Laura|last9=Leonti|first9=Amanda|date=2021-09-30|title=CEBPA-bZip mutations are associated with favorable prognosis in de novo AML: a report from the Children's Oncology Group|url=https://pubmed.ncbi.nlm.nih.gov/33951732|journal=Blood|volume=138|issue=13|pages=1137–1147|doi=10.1182/blood.2020009652|issn=1528-0020|pmc=8570058|pmid=33951732}}</ref><ref name=":10">{{Cite journal|last=Wakita|first=Satoshi|last2=Sakaguchi|first2=Masahiro|last3=Oh|first3=Iekuni|last4=Kako|first4=Shinichi|last5=Toya|first5=Takashi|last6=Najima|first6=Yuho|last7=Doki|first7=Noriko|last8=Kanda|first8=Junya|last9=Kuroda|first9=Junya|date=2022-01-11|title=Prognostic impact of CEBPA bZIP domain mutation in acute myeloid leukemia|url=https://pubmed.ncbi.nlm.nih.gov/34448807|journal=Blood Advances|volume=6|issue=1|pages=238–247|doi=10.1182/bloodadvances.2021004292|issn=2473-9537|pmc=8753195|pmid=34448807}}</ref><ref name=":5" />. Accounts for 4 - 9% of AML diagnoses in children and young adults. Less common in older patients.




<blockquote class='blockedit'>{{Box-round|title=v4:Gene Mutations (SNV/INDEL)|The content below was from the old template. Please incorporate above.}}
AML with ''CEBPA'' mutation is associated with favorable prognosis<ref>Pollyea DA, Altman JK, (2025). NCCN Clinical Practice Guidelines in Oncology: AML. Version 2. Available at: NCCN.org.</ref><ref name=":11">Tumours, 5th edition, IARC Press:Lyon, 2024. Online at: WHO Classification of Tumours.</ref>. bi''CEBPA'' accounts for 2.8% of AML cases, 91% bi''CEBPA'' AML cases with bZIP mutation and favorable prognosis, only 9% bi''CEBPA'' AML cases without bZIP mutation and conflict prognosis<ref>{{Cite journal|last=Wouters|first=Bas J.|last2=Löwenberg|first2=Bob|last3=Erpelinck-Verschueren|first3=Claudia A. J.|last4=van Putten|first4=Wim L. J.|last5=Valk|first5=Peter J. M.|last6=Delwel|first6=Ruud|date=2009-03-26|title=Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome|url=https://pubmed.ncbi.nlm.nih.gov/19171880|journal=Blood|volume=113|issue=13|pages=3088–3091|doi=10.1182/blood-2008-09-179895|issn=1528-0020|pmc=2662648|pmid=19171880}}</ref><ref>{{Cite journal|last=Dufour|first=Annika|last2=Schneider|first2=Friederike|last3=Metzeler|first3=Klaus H.|last4=Hoster|first4=Eva|last5=Schneider|first5=Stephanie|last6=Zellmeier|first6=Evelyn|last7=Benthaus|first7=Tobias|last8=Sauerland|first8=Maria-Cristina|last9=Berdel|first9=Wolfgang E.|date=2010-02-01|title=Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome|url=https://pubmed.ncbi.nlm.nih.gov/20038735|journal=Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology|volume=28|issue=4|pages=570–577|doi=10.1200/JCO.2008.21.6010|issn=1527-7755|pmid=20038735}}</ref><ref>{{Cite journal|last=Green|first=Claire L.|last2=Koo|first2=Kenneth K.|last3=Hills|first3=Robert K.|last4=Burnett|first4=Alan K.|last5=Linch|first5=David C.|last6=Gale|first6=Rosemary E.|date=2010-06-01|title=Prognostic significance of CEBPA mutations in a large cohort of younger adult patients with acute myeloid leukemia: impact of double CEBPA mutations and the interaction with FLT3 and NPM1 mutations|url=https://pubmed.ncbi.nlm.nih.gov/20439648|journal=Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology|volume=28|issue=16|pages=2739–2747|doi=10.1200/JCO.2009.26.2501|issn=1527-7755|pmid=20439648}}</ref>. Single mutation-''CEBPA'' accounts for 2.3% of AML cases, 32% of ''CEBPA'' single-mutation cases with bZIP mutation and favorable prognosis, while 68% of ''CEBPA'' single-mutation cases without bZIP mutation and show similar prognosis to that of AML with wildtype ''CEBPA''<ref name=":11" />.  smbZIP-''CEBPA'' AML shows similar favorable prognosis with bi''CEBPA'' (Children and adults aged up to 70 years)<ref name=":10" /><ref name=":5" /><ref name=":9" />'','' justifying the inclusion of smbZIP-''CEBPA'' subset''.''


Pathogenic mutations in ''CEBPA'' are predominantly insertion/deletion frameshift mutations in the N-terminal TAD region and in-frame C-terminal bZIP mutations. No particular mutational hotspots exist but the following table records the most reported mutations in the COSMIC database (frequency based on a count out of 1523 mutations):


{| class="wikitable sortable"
The treatment approach involves similar induction and consolidation methods as other types of AML, specifically the 7+3 regimen (cytarabine and anthracycline) followed by consolidation with either cytarabine or azacitidine. There may be potential benefits from a stem cell transplant; however, it's important to note that a family member with a germline ''CEBPA'' mutation cannot be used as a donor. Relapsed patients have favorable prognosis as well<ref>{{Cite journal|last=Schlenk|first=Richard F.|last2=Taskesen|first2=Erdogan|last3=van Norden|first3=Yvette|last4=Krauter|first4=Jürgen|last5=Ganser|first5=Arnold|last6=Bullinger|first6=Lars|last7=Gaidzik|first7=Verena I.|last8=Paschka|first8=Peter|last9=Corbacioglu|first9=Andrea|date=2013-08-29|title=The value of allogeneic and autologous hematopoietic stem cell transplantation in prognostically favorable acute myeloid leukemia with double mutant CEBPA|url=https://doi.org/10.1182/blood-2013-05-503847|journal=Blood|volume=122|issue=9|pages=1576–1582|doi=10.1182/blood-2013-05-503847|issn=0006-4971}}</ref>. There is also a propose of a new algorithm for the treatment of these patients, including both familial and sporadic ''CEBPA'' mutated AML patients (Figure3)<ref>{{Cite journal|last=Su|first=Long|last2=Shi|first2=Yuan-Yuan|last3=Liu|first3=Zeng-Yan|last4=Gao|first4=Su-Jun|date=2022|title=Acute Myeloid Leukemia With CEBPA Mutations: Current Progress and Future Directions|url=https://pubmed.ncbi.nlm.nih.gov/35178345|journal=Frontiers in Oncology|volume=12|pages=806137|doi=10.3389/fonc.2022.806137|issn=2234-943X|pmc=8844020|pmid=35178345}}</ref>.
|-
|-
!Gene!!Mutation!!Oncogene/Tumor Suppressor/Other!!Presumed Mechanism (LOF/GOF/Other; Driver/Passenger)!!Prevalence (COSMIC/TCGA/Other)
|''CEBPA''
<br />
|c.68_69insC, p.H24fs*84
|Oncogene
|Recurrent (AML)
|D, P, T
|Yes (NCCN)
|
|-
|-
|''CEBPA''||c.939_940insAAG, p.K313_V314insK||Oncogene||LOF||52
|''CEBPA''
|c.247delC, p.Q83fs*77
|Oncogene
|Recurrent (AML)
|D, P, T
|Yes (NCCN)
|
|-
|-
|''CEBPA''||c.68_69insC, p.H24fs*84||Oncogene||LOF||43
|''CEBPA''
|c.936_937insCAG, p.Q312_K313insQ
|Oncogene
|Recurrent (AML)
|D, P, T
|Yes (NCCN)
|
|-
|-
|''CEBPA''||c.247delC, p.Q83fs*77||Oncogene||LOF||32
|''CEBPA''
|-
|c.912_913insTTG, p.K304_Q305insL
|''CEBPA''||c.936_937insCAG, p.Q312_K313insQ||Oncogene||LOF||28
|Oncogene
|-
|Recurrent (AML)
|''CEBPA''||c.912_913insTTG, p.K304_Q305insL||Oncogene||LOF||24
|D, P, T
|}
|Yes (NCCN)
|
===Other Mutations===
|}Note: A more extensive list of mutations can be found in [https://www.cbioportal.org/ <u>cBioportal</u>], [https://cancer.sanger.ac.uk/cosmic <u>COSMIC</u>], and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
Concurrent mutations in ''NPM1'' and ''FLT3'' are seen less frequently in individuals with biallelic ''CEBPA'' mutations than in those with no or monoallelic mutations<ref name=":2" />. Conversely, mutations in ''GATA2'' appear to occur more often in ''CEBPA'' single- and double-mutants<ref>{{Cite journal|last=Green|first=Claire L.|last2=Tawana|first2=Kiran|last3=Hills|first3=Robert K.|last4=Bödör|first4=Csaba|last5=Fitzgibbon|first5=Jude|last6=Inglott|first6=Sarah|last7=Ancliff|first7=Phil|last8=Burnett|first8=Alan K.|last9=Linch|first9=David C.|date=2013|title=GATA2 mutations in sporadic and familial acute myeloid leukaemia patients with CEBPA mutations|url=https://www.ncbi.nlm.nih.gov/pubmed/23560626|journal=British Journal of Haematology|volume=161|issue=5|pages=701–705|doi=10.1111/bjh.12317|issn=1365-2141|pmid=23560626}}</ref>. The prognostic significance of these concomitant mutations is, however, unclear. Biallelic ''CEBPA'' mutations appear to confer a positive prognostic effect regardless of concomitant mutations.
 
 
Most of (>70%) cases associated with normal karyotype; del(9q) may also be seen<ref name=":6" /><ref name=":7" />. Concurrent mutations in ''NPM1'' and ''FLT3'' are seen less frequently (5-9%) in individuals with biallelic ''CEBPA'' mutations than in those with no or monoallelic mutations<ref name=":2">{{Cite journal|last=Taskesen|first=Erdogan|last2=Bullinger|first2=Lars|last3=Corbacioglu|first3=Andrea|last4=Sanders|first4=Mathijs A.|last5=Erpelinck|first5=Claudia A. J.|last6=Wouters|first6=Bas J.|last7=van der Poel-van de Luytgaarde|first7=Sonja C.|last8=Damm|first8=Frederik|last9=Krauter|first9=Jürgen|date=2011|title=Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity|url=https://www.ncbi.nlm.nih.gov/pubmed/21177436|journal=Blood|volume=117|issue=8|pages=2469–2475|doi=10.1182/blood-2010-09-307280|issn=1528-0020|pmid=21177436}}</ref>. Conversely, mutations in ''GATA2'' appear to occur more often (39%) in ''CEBPA'' single- and double-mutants<ref>{{Cite journal|last=Green|first=Claire L.|last2=Tawana|first2=Kiran|last3=Hills|first3=Robert K.|last4=Bödör|first4=Csaba|last5=Fitzgibbon|first5=Jude|last6=Inglott|first6=Sarah|last7=Ancliff|first7=Phil|last8=Burnett|first8=Alan K.|last9=Linch|first9=David C.|date=2013|title=GATA2 mutations in sporadic and familial acute myeloid leukaemia patients with CEBPA mutations|url=https://www.ncbi.nlm.nih.gov/pubmed/23560626|journal=British Journal of Haematology|volume=161|issue=5|pages=701–705|doi=10.1111/bjh.12317|issn=1365-2141|pmid=23560626}}</ref>. The prognostic significance of these concomitant mutations is, however, unclear. Biallelic ''CEBPA'' mutations appear to confer a positive prognostic effect regardless of concomitant mutations.


{| class="wikitable sortable"
{| class="wikitable sortable"
Line 294: Line 218:
|Mutually Exclusive||None
|Mutually Exclusive||None
|}
|}
</blockquote>
==Epigenomic Alterations==
==Epigenomic Alterations==


None
Mutation types include mutations in the encoding gene and promoter hypermethylation<ref>{{Cite journal|last=Hollink|first=Iris H. I. M.|last2=van den Heuvel-Eibrink|first2=Marry M.|last3=Arentsen-Peters|first3=Susan T. C. J. M.|last4=Zimmermann|first4=Martin|last5=Peeters|first5=Justine K.|last6=Valk|first6=Peter J. M.|last7=Balgobind|first7=Brian V.|last8=Sonneveld|first8=Edwin|last9=Kaspers|first9=Gertjan J. L.|date=2011-03|title=Characterization of CEBPA mutations and promoter hypermethylation in pediatric acute myeloid leukemia|url=https://pubmed.ncbi.nlm.nih.gov/21134981|journal=Haematologica|volume=96|issue=3|pages=384–392|doi=10.3324/haematol.2010.031336|issn=1592-8721|pmc=3046269|pmid=21134981}}</ref>.


==Genes and Main Pathways Involved==
==Genes and Main Pathways Involved==


Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Can include references in the table.'')</span>
 
''CEBPA'', located on chromosome 19 band q13.1, encodes a transcription factor of the basic region leucine zipper (bZIP) family. It is involved in the coordination of myeloid differentiation and cellular growth arrest. Alternative translation initiation sites result in protein isoforms of different lengths.
 
''CEPBA'' works in a tissue-specific manner to direct cellular differentiation by activating lineage-specific gene promoters. Interactions with the basal transcriptional apparatus (TBP/TFIIB), histone acetylators (CBP/p300), and chromatin-remodelling complexes (SWI/SNF) have all been implicated in lineage-specific gene activation by ''CEBPA''. In the haematopoietic system there appears to be interplay between ''CEBPA'' and ''GATA'' factors<ref>{{Cite journal|last=McNagny|first=K. M.|last2=Sieweke|first2=M. H.|last3=Döderlein|first3=G.|last4=Graf|first4=T.|last5=Nerlov|first5=C.|date=1998|title=Regulation of eosinophil-specific gene expression by a C/EBP-Ets complex and GATA-1|url=https://www.ncbi.nlm.nih.gov/pubmed/9649437|journal=The EMBO journal|volume=17|issue=13|pages=3669–3680|doi=10.1093/emboj/17.13.3669|issn=0261-4189|pmc=1170703|pmid=9649437}}</ref>. ''CEBPA'' knockout mice show a complete lack of granulocytes while blasts accumulate in the bone marrow, suggesting an early block of myeloid maturation<ref>{{Cite journal|last=Zhang|first=D. E.|last2=Zhang|first2=P.|last3=Wang|first3=N. D.|last4=Hetherington|first4=C. J.|last5=Darlington|first5=G. J.|last6=Tenen|first6=D. G.|date=1997|title=Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice|url=https://www.ncbi.nlm.nih.gov/pubmed/9012825|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=94|issue=2|pages=569–574|doi=10.1073/pnas.94.2.569|issn=0027-8424|pmc=PMC19554|pmid=9012825}}</ref>. In the context of haematopoietic differentiation, evidence suggests ''CEBPA'' plays a role in regulating the expression of genes encoding growth factor receptors (e.g. granulocyte colony-stimulating factor) and secondary granule proteins (e.g. lactoferrin)<ref>{{Cite journal|last=Radomska|first=H. S.|last2=Huettner|first2=C. S.|last3=Zhang|first3=P.|last4=Cheng|first4=T.|last5=Scadden|first5=D. T.|last6=Tenen|first6=D. G.|date=1998|title=CCAAT/enhancer binding protein alpha is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors|url=https://www.ncbi.nlm.nih.gov/pubmed/9632814|journal=Molecular and Cellular Biology|volume=18|issue=7|pages=4301–4314|doi=10.1128/mcb.18.7.4301|issn=0270-7306|pmc=PMC109014|pmid=9632814}}</ref><ref>{{Cite journal|last=Zhang|first=P.|last2=Iwama|first2=A.|last3=Datta|first3=M. W.|last4=Darlington|first4=G. J.|last5=Link|first5=D. C.|last6=Tenen|first6=D. G.|date=1998|title=Upregulation of interleukin 6 and granulocyte colony-stimulating factor receptors by transcription factor CCAAT enhancer binding protein alpha (C/EBP alpha) is critical for granulopoiesis|url=https://www.ncbi.nlm.nih.gov/pubmed/9743535|journal=The Journal of Experimental Medicine|volume=188|issue=6|pages=1173–1184|doi=10.1084/jem.188.6.1173|issn=0022-1007|pmc=2212540|pmid=9743535}}</ref>. It has also been implicated, along with ''NFI-A'', in mediating miR-223 expression<ref>{{Cite journal|last=Fazi|first=Francesco|last2=Rosa|first2=Alessandro|last3=Fatica|first3=Alessandro|last4=Gelmetti|first4=Vania|last5=De Marchis|first5=Maria Laura|last6=Nervi|first6=Clara|last7=Bozzoni|first7=Irene|date=2005|title=A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis|url=https://www.ncbi.nlm.nih.gov/pubmed/16325577|journal=Cell|volume=123|issue=5|pages=819–831|doi=10.1016/j.cell.2005.09.023|issn=0092-8674|pmid=16325577}}</ref>. Studies indicate that ''CEBPA'' is not required for differentiation of granulocytes beyond the granulocyte-monocyte progenitor (GMP) stage, and that ''CEBPA'' controls stem-cell renewal with expression of ''Bmi-1'' elevated in '''CEBPA'' knockouts<ref>{{Cite journal|last=Zhang|first=Pu|last2=Iwasaki-Arai|first2=Junko|last3=Iwasaki|first3=Hiromi|last4=Fenyus|first4=Maris L.|last5=Dayaram|first5=Tajhal|last6=Owens|first6=Bronwyn M.|last7=Shigematsu|first7=Hirokazu|last8=Levantini|first8=Elena|last9=Huettner|first9=Claudia S.|date=2004|title=Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha|url=https://www.ncbi.nlm.nih.gov/pubmed/15589173|journal=Immunity|volume=21|issue=6|pages=853–863|doi=10.1016/j.immuni.2004.11.006|issn=1074-7613|pmid=15589173}}</ref>.
Proliferation arrest also appears to be an important aspect of ''CEBPA'' function via interaction with CDK2/CDK4, upregulation of the p21 (WAF-1/CIP-1/SDI-1) protein and the SWI/SNF complex, and inhibition of the E2F complex<ref>{{Cite journal|last=Pedersen|first=T. A.|last2=Kowenz-Leutz|first2=E.|last3=Leutz|first3=A.|last4=Nerlov|first4=C.|date=2001|title=Cooperation between C/EBPalpha TBP/TFIIB and SWI/SNF recruiting domains is required for adipocyte differentiation|url=https://www.ncbi.nlm.nih.gov/pubmed/11731483|journal=Genes & Development|volume=15|issue=23|pages=3208–3216|doi=10.1101/gad.209901|issn=0890-9369|pmc=PMC312836|pmid=11731483}}</ref><ref>{{Cite journal|last=Slomiany|first=B. A.|last2=D'Arigo|first2=K. L.|last3=Kelly|first3=M. M.|last4=Kurtz|first4=D. T.|date=2000|title=C/EBPalpha inhibits cell growth via direct repression of E2F-DP-mediated transcription|url=https://www.ncbi.nlm.nih.gov/pubmed/10913181|journal=Molecular and Cellular Biology|volume=20|issue=16|pages=5986–5997|doi=10.1128/mcb.20.16.5986-5997.2000|issn=0270-7306|pmc=PMC86075|pmid=10913181}}</ref><ref>{{Cite journal|last=Timchenko|first=N. A.|last2=Wilde|first2=M.|last3=Nakanishi|first3=M.|last4=Smith|first4=J. R.|last5=Darlington|first5=G. J.|date=1996|title=CCAAT/enhancer-binding protein alpha (C/EBP alpha) inhibits cell proliferation through the p21 (WAF-1/CIP-1/SDI-1) protein|url=https://www.ncbi.nlm.nih.gov/pubmed/8846917|journal=Genes & Development|volume=10|issue=7|pages=804–815|doi=10.1101/gad.10.7.804|issn=0890-9369|pmid=8846917}}</ref><ref>{{Cite journal|last=Wang|first=H.|last2=Iakova|first2=P.|last3=Wilde|first3=M.|last4=Welm|first4=A.|last5=Goode|first5=T.|last6=Roesler|first6=W. J.|last7=Timchenko|first7=N. A.|date=2001|title=C/EBPalpha arrests cell proliferation through direct inhibition of Cdk2 and Cdk4|url=https://www.ncbi.nlm.nih.gov/pubmed/11684017|journal=Molecular Cell|volume=8|issue=4|pages=817–828|doi=10.1016/s1097-2765(01)00366-5|issn=1097-2765|pmid=11684017}}</ref><ref>{{Cite journal|last=Wang|first=Qian-Fei|last2=Cleaves|first2=Rebecca|last3=Kummalue|first3=Tanawan|last4=Nerlov|first4=Claus|last5=Friedman|first5=Alan D.|date=2003|title=Cell cycle inhibition mediated by the outer surface of the C/EBPalpha basic region is required but not sufficient for granulopoiesis|url=https://www.ncbi.nlm.nih.gov/pubmed/12730669|journal=Oncogene|volume=22|issue=17|pages=2548–2557|doi=10.1038/sj.onc.1206360|issn=0950-9232|pmid=12730669}}</ref>. This E2F inhibition leads to ''c-myc'' downregulation, which is required for granulocytic regulation<ref>{{Cite journal|last=Johansen|first=L. M.|last2=Iwama|first2=A.|last3=Lodie|first3=T. A.|last4=Sasaki|first4=K.|last5=Felsher|first5=D. W.|last6=Golub|first6=T. R.|last7=Tenen|first7=D. G.|date=2001|title=c-Myc is a critical target for c/EBPalpha in granulopoiesis|url=https://www.ncbi.nlm.nih.gov/pubmed/11340171|journal=Molecular and Cellular Biology|volume=21|issue=11|pages=3789–3806|doi=10.1128/MCB.21.11.3789-3806.2001|issn=0270-7306|pmc=PMC87031|pmid=11340171}}</ref>. Mutations in the C-terminal region of ''CEBPA'' abrogate CEBPA-E2F complex function<ref>{{Cite journal|last=Porse|first=B. T.|last2=Pedersen TA|first2=null|last3=Xu|first3=X.|last4=Lindberg|first4=B.|last5=Wewer|first5=U. M.|last6=Friis-Hansen|first6=L.|last7=Nerlov|first7=C.|date=2001|title=E2F repression by C/EBPalpha is required for adipogenesis and granulopoiesis in vivo|url=https://www.ncbi.nlm.nih.gov/pubmed/11672531|journal=Cell|volume=107|issue=2|pages=247–258|doi=10.1016/s0092-8674(01)00516-5|issn=0092-8674|pmid=11672531}}</ref>.
The precise mechanism by which ''CEBPA'' mutants inhibit granulocytic differentiation in the context of AML is still unclear.
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome
|-
|-
|EXAMPLE: BRAF and MAP2K1; Activating mutations
|<span class="blue-text">EXAMPLE:</span> ''BRAF'' and ''MAP2K1''; Activating mutations
|EXAMPLE: MAPK signaling
|<span class="blue-text">EXAMPLE:</span> MAPK signaling
|EXAMPLE: Increased cell growth and proliferation
|<span class="blue-text">EXAMPLE:</span> Increased cell growth and proliferation
|-
|<span class="blue-text">EXAMPLE:</span> ''CDKN2A''; Inactivating mutations
|<span class="blue-text">EXAMPLE:</span> Cell cycle regulation
|<span class="blue-text">EXAMPLE:</span> Unregulated cell division
|-
|-
|EXAMPLE: CDKN2A; Inactivating mutations
|<span class="blue-text">EXAMPLE:</span> ''KMT2C'' and ''ARID1A''; Inactivating mutations
|EXAMPLE: Cell cycle regulation
|<span class="blue-text">EXAMPLE:</span> Histone modification, chromatin remodeling
|EXAMPLE: Unregulated cell division
|<span class="blue-text">EXAMPLE:</span> Abnormal gene expression program
|-
|-
|EXAMPLE:  KMT2C and ARID1A; Inactivating mutations
|
|EXAMPLE:  Histone modification, chromatin remodeling
|
|EXAMPLE:  Abnormal gene expression program
|
|}
|}
<blockquote class='blockedit'>{{Box-round|title=v4:Genes and Main Pathways Involved|The content below was from the old template. Please incorporate above.}}
''CEBPA'', located on chromosome 19 band q13.1, encodes a transcription factor of the basic region leucine zipper (bZIP) family. It is involved in the coordination of myeloid differentiation and cellular growth arrest. Alternative translation initiation sites result in protein isoforms of different lengths.
''CEPBA'' works in a tissue-specific manner to direct cellular differentiation by activating lineage-specific gene promoters. Interactions with the basal transcriptional apparatus (TBP/TFIIB), histone acetylators (CBP/p300), and chromatin-remodelling complexes (SWI/SNF) have all been implicated in lineage-specific gene activation by ''CEBPA''. In the haematopoietic system there appears to be interplay between ''CEBPA'' and ''GATA'' factors<ref>{{Cite journal|last=McNagny|first=K. M.|last2=Sieweke|first2=M. H.|last3=Döderlein|first3=G.|last4=Graf|first4=T.|last5=Nerlov|first5=C.|date=1998|title=Regulation of eosinophil-specific gene expression by a C/EBP-Ets complex and GATA-1|url=https://www.ncbi.nlm.nih.gov/pubmed/9649437|journal=The EMBO journal|volume=17|issue=13|pages=3669–3680|doi=10.1093/emboj/17.13.3669|issn=0261-4189|pmc=1170703|pmid=9649437}}</ref>. ''CEBPA'' knockout mice show a complete lack of granulocytes while blasts accumulate in the bone marrow, suggesting an early block of myeloid maturation<ref>{{Cite journal|last=Zhang|first=D. E.|last2=Zhang|first2=P.|last3=Wang|first3=N. D.|last4=Hetherington|first4=C. J.|last5=Darlington|first5=G. J.|last6=Tenen|first6=D. G.|date=1997|title=Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice|url=https://www.ncbi.nlm.nih.gov/pubmed/9012825|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=94|issue=2|pages=569–574|doi=10.1073/pnas.94.2.569|issn=0027-8424|pmc=PMC19554|pmid=9012825}}</ref>.
In the context of haematopoietic differentiation, evidence suggests ''CEBPA'' plays a role in regulating the expression of genes encoding growth factor receptors (e.g. granulocyte colony-stimulating factor) and secondary granule proteins (e.g. lactoferrin)<ref>{{Cite journal|last=Radomska|first=H. S.|last2=Huettner|first2=C. S.|last3=Zhang|first3=P.|last4=Cheng|first4=T.|last5=Scadden|first5=D. T.|last6=Tenen|first6=D. G.|date=1998|title=CCAAT/enhancer binding protein alpha is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors|url=https://www.ncbi.nlm.nih.gov/pubmed/9632814|journal=Molecular and Cellular Biology|volume=18|issue=7|pages=4301–4314|doi=10.1128/mcb.18.7.4301|issn=0270-7306|pmc=PMC109014|pmid=9632814}}</ref><ref>{{Cite journal|last=Zhang|first=P.|last2=Iwama|first2=A.|last3=Datta|first3=M. W.|last4=Darlington|first4=G. J.|last5=Link|first5=D. C.|last6=Tenen|first6=D. G.|date=1998|title=Upregulation of interleukin 6 and granulocyte colony-stimulating factor receptors by transcription factor CCAAT enhancer binding protein alpha (C/EBP alpha) is critical for granulopoiesis|url=https://www.ncbi.nlm.nih.gov/pubmed/9743535|journal=The Journal of Experimental Medicine|volume=188|issue=6|pages=1173–1184|doi=10.1084/jem.188.6.1173|issn=0022-1007|pmc=2212540|pmid=9743535}}</ref>. It has also been implicated, along with ''NFI-A'', in mediating miR-223 expression<ref>{{Cite journal|last=Fazi|first=Francesco|last2=Rosa|first2=Alessandro|last3=Fatica|first3=Alessandro|last4=Gelmetti|first4=Vania|last5=De Marchis|first5=Maria Laura|last6=Nervi|first6=Clara|last7=Bozzoni|first7=Irene|date=2005|title=A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis|url=https://www.ncbi.nlm.nih.gov/pubmed/16325577|journal=Cell|volume=123|issue=5|pages=819–831|doi=10.1016/j.cell.2005.09.023|issn=0092-8674|pmid=16325577}}</ref>. Studies indicate that ''CEBPA'' is not required for differentiation of granulocytes beyond the granulocyte-monocyte progenitor (GMP) stage, and that ''CEBPA'' controls stem-cell renewal with expression of ''Bmi-1'' elevated in '''CEBPA'' knockouts<ref>{{Cite journal|last=Zhang|first=Pu|last2=Iwasaki-Arai|first2=Junko|last3=Iwasaki|first3=Hiromi|last4=Fenyus|first4=Maris L.|last5=Dayaram|first5=Tajhal|last6=Owens|first6=Bronwyn M.|last7=Shigematsu|first7=Hirokazu|last8=Levantini|first8=Elena|last9=Huettner|first9=Claudia S.|date=2004|title=Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha|url=https://www.ncbi.nlm.nih.gov/pubmed/15589173|journal=Immunity|volume=21|issue=6|pages=853–863|doi=10.1016/j.immuni.2004.11.006|issn=1074-7613|pmid=15589173}}</ref>.
Proliferation arrest also appears to be an important aspect of ''CEBPA'' function via interaction with CDK2/CDK4, upregulation of the p21 (WAF-1/CIP-1/SDI-1) protein and the SWI/SNF complex, and inhibition of the E2F complex<ref>{{Cite journal|last=Pedersen|first=T. A.|last2=Kowenz-Leutz|first2=E.|last3=Leutz|first3=A.|last4=Nerlov|first4=C.|date=2001|title=Cooperation between C/EBPalpha TBP/TFIIB and SWI/SNF recruiting domains is required for adipocyte differentiation|url=https://www.ncbi.nlm.nih.gov/pubmed/11731483|journal=Genes & Development|volume=15|issue=23|pages=3208–3216|doi=10.1101/gad.209901|issn=0890-9369|pmc=PMC312836|pmid=11731483}}</ref><ref>{{Cite journal|last=Slomiany|first=B. A.|last2=D'Arigo|first2=K. L.|last3=Kelly|first3=M. M.|last4=Kurtz|first4=D. T.|date=2000|title=C/EBPalpha inhibits cell growth via direct repression of E2F-DP-mediated transcription|url=https://www.ncbi.nlm.nih.gov/pubmed/10913181|journal=Molecular and Cellular Biology|volume=20|issue=16|pages=5986–5997|doi=10.1128/mcb.20.16.5986-5997.2000|issn=0270-7306|pmc=PMC86075|pmid=10913181}}</ref><ref>{{Cite journal|last=Timchenko|first=N. A.|last2=Wilde|first2=M.|last3=Nakanishi|first3=M.|last4=Smith|first4=J. R.|last5=Darlington|first5=G. J.|date=1996|title=CCAAT/enhancer-binding protein alpha (C/EBP alpha) inhibits cell proliferation through the p21 (WAF-1/CIP-1/SDI-1) protein|url=https://www.ncbi.nlm.nih.gov/pubmed/8846917|journal=Genes & Development|volume=10|issue=7|pages=804–815|doi=10.1101/gad.10.7.804|issn=0890-9369|pmid=8846917}}</ref><ref>{{Cite journal|last=Wang|first=H.|last2=Iakova|first2=P.|last3=Wilde|first3=M.|last4=Welm|first4=A.|last5=Goode|first5=T.|last6=Roesler|first6=W. J.|last7=Timchenko|first7=N. A.|date=2001|title=C/EBPalpha arrests cell proliferation through direct inhibition of Cdk2 and Cdk4|url=https://www.ncbi.nlm.nih.gov/pubmed/11684017|journal=Molecular Cell|volume=8|issue=4|pages=817–828|doi=10.1016/s1097-2765(01)00366-5|issn=1097-2765|pmid=11684017}}</ref><ref>{{Cite journal|last=Wang|first=Qian-Fei|last2=Cleaves|first2=Rebecca|last3=Kummalue|first3=Tanawan|last4=Nerlov|first4=Claus|last5=Friedman|first5=Alan D.|date=2003|title=Cell cycle inhibition mediated by the outer surface of the C/EBPalpha basic region is required but not sufficient for granulopoiesis|url=https://www.ncbi.nlm.nih.gov/pubmed/12730669|journal=Oncogene|volume=22|issue=17|pages=2548–2557|doi=10.1038/sj.onc.1206360|issn=0950-9232|pmid=12730669}}</ref>. This E2F inhibition leads to ''c-myc'' downregulation, which is required for granulocytic regulation<ref>{{Cite journal|last=Johansen|first=L. M.|last2=Iwama|first2=A.|last3=Lodie|first3=T. A.|last4=Sasaki|first4=K.|last5=Felsher|first5=D. W.|last6=Golub|first6=T. R.|last7=Tenen|first7=D. G.|date=2001|title=c-Myc is a critical target for c/EBPalpha in granulopoiesis|url=https://www.ncbi.nlm.nih.gov/pubmed/11340171|journal=Molecular and Cellular Biology|volume=21|issue=11|pages=3789–3806|doi=10.1128/MCB.21.11.3789-3806.2001|issn=0270-7306|pmc=PMC87031|pmid=11340171}}</ref>. Mutations in the C-terminal region of ''CEBPA'' abrogate CEBPA-E2F complex function<ref>{{Cite journal|last=Porse|first=B. T.|last2=Pedersen TA|first2=null|last3=Xu|first3=X.|last4=Lindberg|first4=B.|last5=Wewer|first5=U. M.|last6=Friis-Hansen|first6=L.|last7=Nerlov|first7=C.|date=2001|title=E2F repression by C/EBPalpha is required for adipogenesis and granulopoiesis in vivo|url=https://www.ncbi.nlm.nih.gov/pubmed/11672531|journal=Cell|volume=107|issue=2|pages=247–258|doi=10.1016/s0092-8674(01)00516-5|issn=0092-8674|pmid=11672531}}</ref>.
The precise mechanism by which ''CEBPA'' mutants inhibit granulocytic differentiation in the context of AML is still unclear.
</blockquote>
==Genetic Diagnostic Testing Methods==
==Genetic Diagnostic Testing Methods==


Line 336: Line 256:
==Familial Forms==
==Familial Forms==


Familial mutations of ''CEBPA'' have been described in several families<ref name=":3" /><ref>{{Cite journal|last=Nanri|first=Tomoko|last2=Uike|first2=Naokuni|last3=Kawakita|first3=Toshiro|last4=Iwanaga|first4=Eisaku|last5=Mitsuya|first5=Hiroaki|last6=Asou|first6=Norio|date=2010|title=A family harboring a germ-line N-terminal C/EBPalpha mutation and development of acute myeloid leukemia with an additional somatic C-terminal C/EBPalpha mutation|url=https://www.ncbi.nlm.nih.gov/pubmed/19953636|journal=Genes, Chromosomes & Cancer|volume=49|issue=3|pages=237–241|doi=10.1002/gcc.20734|issn=1098-2264|pmid=19953636}}</ref><ref>{{Cite journal|last=Sellick|first=G. S.|last2=Spendlove|first2=H. E.|last3=Catovsky|first3=D.|last4=Pritchard-Jones|first4=K.|last5=Houlston|first5=R. S.|date=2005|title=Further evidence that germline CEBPA mutations cause dominant inheritance of acute myeloid leukaemia|url=https://www.ncbi.nlm.nih.gov/pubmed/15902292|journal=Leukemia|volume=19|issue=7|pages=1276–1278|doi=10.1038/sj.leu.2403788|issn=0887-6924|pmid=15902292}}</ref>. Typically, these are N-terminal mutations that are later joined by a somatic C-terminal mutation on the opposite allele leading to AML.
Familial mutations of ''CEBPA'' have been described in several families<ref name=":3">{{Cite journal|last=Smith|first=Matthew L.|last2=Cavenagh|first2=Jamie D.|last3=Lister|first3=T. Andrew|last4=Fitzgibbon|first4=Jude|date=2004|title=Mutation of CEBPA in familial acute myeloid leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/15575056|journal=The New England Journal of Medicine|volume=351|issue=23|pages=2403–2407|doi=10.1056/NEJMoa041331|issn=1533-4406|pmid=15575056}}</ref><ref>{{Cite journal|last=Nanri|first=Tomoko|last2=Uike|first2=Naokuni|last3=Kawakita|first3=Toshiro|last4=Iwanaga|first4=Eisaku|last5=Mitsuya|first5=Hiroaki|last6=Asou|first6=Norio|date=2010|title=A family harboring a germ-line N-terminal C/EBPalpha mutation and development of acute myeloid leukemia with an additional somatic C-terminal C/EBPalpha mutation|url=https://www.ncbi.nlm.nih.gov/pubmed/19953636|journal=Genes, Chromosomes & Cancer|volume=49|issue=3|pages=237–241|doi=10.1002/gcc.20734|issn=1098-2264|pmid=19953636}}</ref><ref>{{Cite journal|last=Sellick|first=G. S.|last2=Spendlove|first2=H. E.|last3=Catovsky|first3=D.|last4=Pritchard-Jones|first4=K.|last5=Houlston|first5=R. S.|date=2005|title=Further evidence that germline CEBPA mutations cause dominant inheritance of acute myeloid leukaemia|url=https://www.ncbi.nlm.nih.gov/pubmed/15902292|journal=Leukemia|volume=19|issue=7|pages=1276–1278|doi=10.1038/sj.leu.2403788|issn=0887-6924|pmid=15902292}}</ref>.  Approximately 5-10% of bi''CEBPA'' AML cases have a germline N-terminal<ref>{{Cite journal|last=Taskesen|first=Erdogan|last2=Bullinger|first2=Lars|last3=Corbacioglu|first3=Andrea|last4=Sanders|first4=Mathijs A.|last5=Erpelinck|first5=Claudia A. J.|last6=Wouters|first6=Bas J.|last7=van der Poel-van de Luytgaarde|first7=Sonja C.|last8=Damm|first8=Frederik|last9=Krauter|first9=Jürgen|date=2011-02-24|title=Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity|url=https://pubmed.ncbi.nlm.nih.gov/21177436|journal=Blood|volume=117|issue=8|pages=2469–2475|doi=10.1182/blood-2010-09-307280|issn=1528-0020|pmid=21177436}}</ref>. Typically, these are N-terminal mutations that are later joined by a somatic C-terminal mutation on the opposite allele leading to AML. In the familia from, AML has very high penetrance and presents relatively early (median aga: 245.5 years)<ref name=":8" />. There are some notable familial AML-Associated ''CEBPA'' germline pathogenic variants: c.68delC, p.Pro23ArgfsTer137<ref>{{Cite journal|last=Smith|first=Matthew L.|last2=Cavenagh|first2=Jamie D.|last3=Lister|first3=T. Andrew|last4=Fitzgibbon|first4=Jude|date=2004-12-02|title=Mutation of CEBPA in familial acute myeloid leukemia|url=https://pubmed.ncbi.nlm.nih.gov/15575056|journal=The New England Journal of Medicine|volume=351|issue=23|pages=2403–2407|doi=10.1056/NEJMoa041331|issn=1533-4406|pmid=15575056}}</ref>; c.68dupC, p.His24AlafsTer84<ref>{{Cite journal|last=Sellick|first=G. S.|last2=Spendlove|first2=H. E.|last3=Catovsky|first3=D.|last4=Pritchard-Jones|first4=K.|last5=Houlston|first5=R. S.|date=2005-07|title=Further evidence that germline CEBPA mutations cause dominant inheritance of acute myeloid leukaemia|url=https://pubmed.ncbi.nlm.nih.gov/15902292|journal=Leukemia|volume=19|issue=7|pages=1276–1278|doi=10.1038/sj.leu.2403788|issn=0887-6924|pmid=15902292}}</ref><ref>{{Cite journal|last=Renneville|first=A.|last2=Mialou|first2=V.|last3=Philippe|first3=N.|last4=Kagialis-Girard|first4=S.|last5=Biggio|first5=V.|last6=Zabot|first6=M.-T.|last7=Thomas|first7=X.|last8=Bertrand|first8=Y.|last9=Preudhomme|first9=C.|date=2009-04|title=Another pedigree with familial acute myeloid leukemia and germline CEBPA mutation|url=https://pubmed.ncbi.nlm.nih.gov/18946494|journal=Leukemia|volume=23|issue=4|pages=804–806|doi=10.1038/leu.2008.294|issn=1476-5551|pmid=18946494}}</ref><ref name=":8" />; c.141delC, p.Ala48ProfsTer112<ref name=":1">{{Cite journal|last=Pabst|first=Thomas|last2=Eyholzer|first2=Marianne|last3=Haefliger|first3=Simon|last4=Schardt|first4=Julian|last5=Mueller|first5=Beatrice U.|date=2008-11-01|title=Somatic CEBPA mutations are a frequent second event in families with germline CEBPA mutations and familial acute myeloid leukemia|url=https://pubmed.ncbi.nlm.nih.gov/18768433|journal=Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology|volume=26|issue=31|pages=5088–5093|doi=10.1200/JCO.2008.16.5563|issn=1527-7755|pmid=18768433}}</ref>; c.147_165del19, p.Glu50AlafsTer104<ref>{{Cite journal|last=Debeljak|first=Maruša|last2=Kitanovski|first2=Lidija|last3=Pajič|first3=Tadej|last4=Jazbec|first4=Janez|date=2013-07|title=Concordant acute myeloblastic leukemia in monozygotic twins with germline and shared somatic mutations in the gene for CCAAT-enhancer-binding protein α with 13 years difference at onset|url=https://pubmed.ncbi.nlm.nih.gov/23716546|journal=Haematologica|volume=98|issue=7|pages=e73–74|doi=10.3324/haematol.2012.082578|issn=1592-8721|pmc=3696596|pmid=23716546}}</ref>; c.158delG, p.Gly53AlafsTer107<ref name=":4">{{Cite journal|last=Taskesen|first=Erdogan|last2=Bullinger|first2=Lars|last3=Corbacioglu|first3=Andrea|last4=Sanders|first4=Mathijs A.|last5=Erpelinck|first5=Claudia A. J.|last6=Wouters|first6=Bas J.|last7=van der Poel-van de Luytgaarde|first7=Sonja C.|last8=Damm|first8=Frederik|last9=Krauter|first9=Jürgen|date=2011-02-24|title=Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity|url=https://pubmed.ncbi.nlm.nih.gov/21177436|journal=Blood|volume=117|issue=8|pages=2469–2475|doi=10.1182/blood-2010-09-307280|issn=1528-0020|pmid=21177436}}</ref>; c.189delC, p.Asp63GlufsTer97<ref name=":4" />; c.314_315insT, p.Phe106LeufsTer2<ref name=":1" />; c.932A>C, p.Gln311Pro<ref>{{Cite journal|last=Pathak|first=Anand|last2=Seipel|first2=Katja|last3=Pemov|first3=Alexander|last4=Dewan|first4=Ramita|last5=Brown|first5=Christina|last6=Ravichandran|first6=Sarangan|last7=Luke|first7=Brian T.|last8=Malasky|first8=Michael|last9=Suman|first9=Shalabh|date=2016-07|title=Whole exome sequencing reveals a C-terminal germline variant in CEBPA-associated acute myeloid leukemia: 45-year follow up of a large family|url=https://pubmed.ncbi.nlm.nih.gov/26721895|journal=Haematologica|volume=101|issue=7|pages=846–852|doi=10.3324/haematol.2015.130799|issn=1592-8721|pmc=5004464|pmid=26721895}}</ref>; c.442G>T, p.Glu148Ter<ref>{{Cite journal|last=Mendoza|first=Hadrian|last2=Chen|first2=Po-Han|last3=Pine|first3=Alexander B.|last4=Siddon|first4=Alexa J.|last5=Bale|first5=Allen E.|last6=Gowda|first6=Lohith|last7=Killie|first7=Amy|last8=Richards|first8=Jonica|last9=Varin-Tremblay|first9=Camille|date=2021-05|title=A case of acute myeloid leukemia with unusual germline CEBPA mutation: lessons learned about mutation detection, location, and penetrance|url=https://pubmed.ncbi.nlm.nih.gov/33345654|journal=Leukemia & Lymphoma|volume=62|issue=5|pages=1251–1254|doi=10.1080/10428194.2020.1861276|issn=1029-2403|pmid=33345654}}</ref>.


==Additional Information==
==Additional Information==


Put your text here
''CEBPA'' stands for CCAAT enhancer-binding protein alpha.


==Links==
==Links==
Line 347: Line 267:


==References==
==References==
(use the "Cite" icon at the top of the page) <span style="color:#0070C0">(''Instructions: Add each reference into the text above by clicking on where you want to insert the reference, selecting the “Cite” icon at the top of the page, and using the “Automatic” tab option to search such as by PMID to select the reference to insert. The reference list in this section will be automatically generated and sorted.''</span> <span style="color:#0070C0">''If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference''</span><span style="color:#0070C0">''.''</span><span style="color:#0070C0">) </span> <references />
(use the "Cite" icon at the top of the page) <span style="color:#0070C0">(''Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted''</span><span style="color:#0070C0">''.''</span><span style="color:#0070C0">)</span> <references />


'''
<br />


==Notes==
==Notes==
<nowiki>*</nowiki>Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage)Additional global feedback or concerns are also welcome.
<nowiki>*</nowiki>Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the [[Leadership|''<u>Associate Editor</u>'']] or other CCGA representativeWhen pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author.
 
Prior Author(s): 
 
Paul Defazio, MSc, Monash Health
 
       
<nowiki>*</nowiki>''Citation of this Page'': “Acute myeloid leukaemia with CEBPA mutation”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:Acute_myeloid_leukaemia_with_CEBPA_mutation</nowiki>.
<nowiki>*</nowiki>''Citation of this Page'': “Acute myeloid leukaemia with CEBPA mutation”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:Acute_myeloid_leukaemia_with_CEBPA_mutation</nowiki>.
[[Category:HAEM5]][[Category:DISEASE]][[Category:Diseases A]]
[[Category:HAEM5]]
[[Category:DISEASE]]
[[Category:Diseases A]]