HAEM5:Sezary syndrome: Difference between revisions
| [unchecked revision] | [unchecked revision] |
Bailey.Glen (talk | contribs) No edit summary |
Bailey.Glen (talk | contribs) No edit summary |
||
| (7 intermediate revisions by 2 users not shown) | |||
| Line 4: | Line 4: | ||
{{Under Construction}} | {{Under Construction}} | ||
<blockquote class= | <blockquote class="blockedit">{{Box-round|title=Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification|This page was converted to the new template on 2023-12-07. The original page can be found at [[HAEM4:Sézary Syndrome]]. | ||
}}</blockquote> | }}</blockquote> | ||
<span style="color:#0070C0">(General Instructions – The | <span style="color:#0070C0">(General Instructions – The focus of these pages is the clinically significant genetic alterations in each disease type. This is based on up-to-date knowledge from multiple resources such as PubMed and the WHO classification books. The CCGA is meant to be a supplemental resource to the WHO classification books; the CCGA captures in a continually updated wiki-stye manner the current genetics/genomics knowledge of each disease, which evolves more rapidly than books can be revised and published. If the same disease is described in multiple WHO classification books, the genetics-related information for that disease will be consolidated into a single main page that has this template (other pages would only contain a link to this main page). Use [https://www.genenames.org/ <u>HUGO-approved gene names and symbols</u>] (italicized when appropriate), [https://varnomen.hgvs.org/ <u>HGVS-based nomenclature for variants</u>], as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column in a table, click nearby within the table and select the > symbol that appears. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see </span><u>[[Author_Instructions]]</u><span style="color:#0070C0"> and [[Frequently Asked Questions (FAQs)|<u>FAQs</u>]] as well as contact your [[Leadership|<u>Associate Editor</u>]] or [mailto:CCGA@cancergenomics.org <u>Technical Support</u>].)</span> | ||
==Primary Author(s)*== | ==Primary Author(s)*== | ||
| Line 16: | Line 16: | ||
Daynna J. Wolff, PhD, Medical University of South Carolina | Daynna J. Wolff, PhD, Medical University of South Carolina | ||
==WHO Classification of Disease== | ==WHO Classification of Disease== | ||
| Line 41: | Line 38: | ||
|} | |} | ||
== | ==Related Terminology== | ||
{| class="wikitable" | {| class="wikitable" | ||
| | |+ | ||
| | |Acceptable | ||
|N/A | |||
|- | |- | ||
| | |Not Recommended | ||
| | |N/A | ||
|} | |} | ||
==Gene Rearrangements== | |||
= | Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span> | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
! | !Driver Gene!!Fusion(s) and Common Partner Genes!!Molecular Pathogenesis!!Typical Chromosomal Alteration(s) | ||
!Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease) | |||
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | |||
!Established Clinical Significance Per Guidelines - Yes or No (Source) | |||
!Clinical Relevance Details/Other Notes | |||
|- | |- | ||
| | |<span class="blue-text">EXAMPLE:</span> ''ABL1''||<span class="blue-text">EXAMPLE:</span> ''BCR::ABL1''||<span class="blue-text">EXAMPLE:</span> The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1.||<span class="blue-text">EXAMPLE:</span> t(9;22)(q34;q11.2) | ||
|<span class="blue-text">EXAMPLE:</span> Common (CML) | |||
|<span class="blue-text">EXAMPLE:</span> D, P, T | |||
|<span class="blue-text">EXAMPLE:</span> Yes (WHO, NCCN) | |||
|<span class="blue-text">EXAMPLE:</span> | |||
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference). | |||
|- | |- | ||
| | |<span class="blue-text">EXAMPLE:</span> ''CIC'' | ||
|<span class="blue-text">EXAMPLE:</span> ''CIC::DUX4'' | |||
|<span class="blue-text">EXAMPLE:</span> Typically, the last exon of ''CIC'' is fused to ''DUX4''. The fusion breakpoint in ''CIC'' is usually intra-exonic and removes an inhibitory sequence, upregulating ''PEA3'' genes downstream of ''CIC'' including ''ETV1'', ''ETV4'', and ''ETV5''. | |||
|<span class="blue-text">EXAMPLE:</span> t(4;19)(q25;q13) | |||
|<span class="blue-text">EXAMPLE:</span> Common (CIC-rearranged sarcoma) | |||
|<span class="blue-text">EXAMPLE:</span> D | |||
| | |||
|<span class="blue-text">EXAMPLE:</span> | |||
''DUX4'' has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references). | |||
|- | |- | ||
| | |<span class="blue-text">EXAMPLE:</span> ''ALK'' | ||
|- | |<span class="blue-text">EXAMPLE:</span> ''ELM4::ALK'' | ||
Other fusion partners include ''KIF5B, NPM1, STRN, TFG, TPM3, CLTC, KLC1'' | |||
|<span class="blue-text">EXAMPLE:</span> Fusions result in constitutive activation of the ''ALK'' tyrosine kinase. The most common ''ALK'' fusion is ''EML4::ALK'', with breakpoints in intron 19 of ''ALK''. At the transcript level, a variable (5’) partner gene is fused to 3’ ''ALK'' at exon 20. Rarely, ''ALK'' fusions contain exon 19 due to breakpoints in intron 18. | |||
|<span class="blue-text">EXAMPLE:</span> N/A | |||
|<span class="blue-text">EXAMPLE:</span> Rare (Lung adenocarcinoma) | |||
|<span class="blue-text">EXAMPLE:</span> T | |||
| | |||
|<span class="blue-text">EXAMPLE:</span> | |||
Both balanced and unbalanced forms are observed by FISH (add references). | |||
|- | |- | ||
|<span class="blue-text">EXAMPLE:</span> ''ABL1'' | |||
|<span class="blue-text">EXAMPLE:</span> N/A | |||
|<span class="blue-text">EXAMPLE:</span> Intragenic deletion of exons 2–7 in ''EGFR'' removes the ligand-binding domain, resulting in a constitutively active tyrosine kinase with downstream activation of multiple oncogenic pathways. | |||
|<span class="blue-text">EXAMPLE:</span> N/A | |||
|<span class="blue-text">EXAMPLE:</span> Recurrent (IDH-wildtype Glioblastoma) | |||
|<span class="blue-text">EXAMPLE:</span> D, P, T | |||
| | |||
| | |||
|- | |- | ||
| | | | ||
| | |||
| | | | ||
| | | | ||
| | | | ||
| | | | ||
| | |||
| | |||
|} | |||
<blockquote class="blockedit">{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}}</blockquote> | |||
<blockquote class= | |||
Clonal T cell receptor gene (TCR) rearrangement is characteristic of SS. Characteristically, ''PLS3'', ''DNM3'', ''TWIST1'', and ''EPHA4'' are overexpressed, and ''STAT4'' is underexpressed. | Clonal T cell receptor gene (TCR) rearrangement is characteristic of SS. Characteristically, ''PLS3'', ''DNM3'', ''TWIST1'', and ''EPHA4'' are overexpressed, and ''STAT4'' is underexpressed. | ||
Balanced translocations have not been detected in SS<ref name=":0" />. | Balanced translocations have not been detected in SS<ref name=":0">1. Arber DA, et al., (2017). Sézary syndrome, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4<sup>th</sup> edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. IARC Press: Lyon, France, p390-391. </ref>. | ||
Gene fusion between CTLA4 and CD28 is highly expressed. Additional fusion events include TYK2-UPF1, COL25A1-NFKB2, FASN-SGMS1, SMS1-ZEB1, SPATA21-RASA2, PITRM1-HK1, and BCR-NDUFAF6<ref name=": | Gene fusion between CTLA4 and CD28 is highly expressed. Additional fusion events include TYK2-UPF1, COL25A1-NFKB2, FASN-SGMS1, SMS1-ZEB1, SPATA21-RASA2, PITRM1-HK1, and BCR-NDUFAF6<ref name=":1">{{Cite journal|last=Prasad|first=Aparna|last2=Rabionet|first2=Raquel|last3=Espinet|first3=Blanca|last4=Zapata|first4=Luis|last5=Puiggros|first5=Anna|last6=Melero|first6=Carme|last7=Puig|first7=Anna|last8=Sarria-Trujillo|first8=Yaris|last9=Ossowski|first9=Stephan|date=2016-07|title=Identification of Gene Mutations and Fusion Genes in Patients with Sézary Syndrome|url=https://pubmed.ncbi.nlm.nih.gov/27039262|journal=The Journal of Investigative Dermatology|volume=136|issue=7|pages=1490–1499|doi=10.1016/j.jid.2016.03.024|issn=1523-1747|pmid=27039262}}</ref>. | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
<blockquote class= | <blockquote class="blockedit">{{Box-round|title=v4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).|Please incorporate this section into the relevant tables found in: | ||
* Chromosomal Rearrangements (Gene Fusions) | * Chromosomal Rearrangements (Gene Fusions) | ||
* Individual Region Genomic Gain/Loss/LOH | * Individual Region Genomic Gain/Loss/LOH | ||
* Characteristic Chromosomal Patterns | * Characteristic Chromosomal Patterns | ||
* Gene Mutations (SNV/INDEL)}} | * Gene Mutations (SNV/INDEL)}}</blockquote> | ||
SS is aggressive; however, prognosis is variable and largely depends on stage. A median survival of 32 months and a 5-year survival rate of 10-30% has been reported <ref name=":0" />. Death usually results from opportunistic infections, as SS patients are at an increased risk for infection due to underlying immune dysfunction<ref name=":1" />. Lymph node and visceral involvement are poor prognostic factors, as is the degree of peripheral blood involvement by Sézary cells. Bone marrow involvement is of unknown prognostic relevance <ref name=":0" />. | SS is aggressive; however, prognosis is variable and largely depends on stage. A median survival of 32 months and a 5-year survival rate of 10-30% has been reported <ref name=":0" />. Death usually results from opportunistic infections, as SS patients are at an increased risk for infection due to underlying immune dysfunction<ref name=":1" />. Lymph node and visceral involvement are poor prognostic factors, as is the degree of peripheral blood involvement by Sézary cells. Bone marrow involvement is of unknown prognostic relevance <ref name=":0" />. | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
==Individual Region Genomic Gain / Loss / LOH== | ==Individual Region Genomic Gain/Loss/LOH== | ||
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene rearrangements. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Can refer to CGC workgroup tables as linked on the homepage if applicable. Please include references throughout the table. Do not delete the table.'') </span> | |||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
!Chr #!!Gain | !Chr #!!Gain, Loss, Amp, LOH!!Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size]!!Relevant Gene(s) | ||
!Diagnostic | !Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | ||
!Established Clinical Significance Per Guidelines - Yes or No (Source) | |||
! | !Clinical Relevance Details/Other Notes | ||
!Notes | |||
|- | |- | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> | ||
7 | 7 | ||
|<span class="blue-text">EXAMPLE:</span> Loss | |<span class="blue-text">EXAMPLE:</span> Loss | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> | ||
chr7 | |||
chr7 | |||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> | ||
Unknown | |||
|<span class="blue-text">EXAMPLE:</span> D, P | |||
|<span class="blue-text">EXAMPLE:</span> No | |||
| | |||
|No | |||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> | ||
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add references). | |||
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add | |||
|- | |- | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> | ||
8 | 8 | ||
|<span class="blue-text">EXAMPLE:</span> Gain | |<span class="blue-text">EXAMPLE:</span> Gain | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> | ||
chr8 | |||
|<span class="blue-text">EXAMPLE:</span> | |||
Unknown | |||
|<span class="blue-text">EXAMPLE:</span> D, P | |||
| | |||
|<span class="blue-text">EXAMPLE:</span> | |||
Common recurrent secondary finding for t(8;21) (add references). | |||
|- | |||
|<span class="blue-text">EXAMPLE:</span> | |||
17 | |||
|<span class="blue-text">EXAMPLE:</span> Amp | |||
|<span class="blue-text">EXAMPLE:</span> | |||
17q12; chr17:39,700,064-39,728,658 [hg38; 28.6 kb] | |||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> | ||
''ERBB2'' | |||
|<span class="blue-text">EXAMPLE:</span> D, P, T | |||
| | |||
| | |||
| | |||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> | ||
Amplification of ''ERBB2'' is associated with HER2 overexpression in HER2 positive breast cancer (add references). Add criteria for how amplification is defined. | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|} | |} | ||
<blockquote class= | <blockquote class="blockedit">{{Box-round|title=v4:Genomic Gain/Loss/LOH|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
Recurrent gain-of-function mutations in SS include ''PLGC1'', ''CD28'', and ''TNFRSF1B''. Recurrent loss-of-function mutations include ''ARID1A'', which has been observed in 40% of SS cases<ref name=":0" />. | Recurrent gain-of-function mutations in SS include ''PLGC1'', ''CD28'', and ''TNFRSF1B''. Recurrent loss-of-function mutations include ''ARID1A'', which has been observed in 40% of SS cases<ref name=":0" />. | ||
Somatic duplications can be found ranging from duplications of chromosome bands (8p23.3-q24.3, 17p11.2-q23.2) to entire chromosomes (chr 18). Several somatic deletions have also been demonstrated including a 15-25 Mb deletion on 17p12-p13.3<ref name=": | Somatic duplications can be found ranging from duplications of chromosome bands (8p23.3-q24.3, 17p11.2-q23.2) to entire chromosomes (chr 18). Several somatic deletions have also been demonstrated including a 15-25 Mb deletion on 17p12-p13.3<ref name=":1" />. | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
==Characteristic Chromosomal Patterns== | ==Characteristic Chromosomal or Other Global Mutational Patterns== | ||
Put your text here and fill in the table <span style="color:#0070C0">(I''nstructions: Included in this category are alterations such as hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis; microsatellite instability; homologous recombination deficiency; mutational signature pattern; etc. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span> | |||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
!Chromosomal Pattern | !Chromosomal Pattern | ||
! | !Molecular Pathogenesis | ||
!Prognostic Significance | !Prevalence - | ||
! | Common >20%, Recurrent 5-20% or Rare <5% (Disease) | ||
!Notes | !Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | ||
!Established Clinical Significance Per Guidelines - Yes or No (Source) | |||
!Clinical Relevance Details/Other Notes | |||
|- | |- | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> | ||
Co-deletion of 1p and 18q | Co-deletion of 1p and 18q | ||
| | |<span class="blue-text">EXAMPLE:</span> See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). | ||
| | |<span class="blue-text">EXAMPLE:</span> Common (Oligodendroglioma) | ||
| | |<span class="blue-text">EXAMPLE:</span> D, P | ||
| | |||
| | |||
|- | |||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> | ||
Microsatellite instability - hypermutated | |||
| | |||
|<span class="blue-text">EXAMPLE:</span> Common (Endometrial carcinoma) | |||
|<span class="blue-text">EXAMPLE:</span> P, T | |||
| | |||
| | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|} | |} | ||
<blockquote class= | <blockquote class="blockedit">{{Box-round|title=v4:Characteristic Chromosomal Aberrations / Patterns|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
Numerical and structural alterations are common in SS. These include loss of 1p, 6q, and 10q with gains of 7 and 8q<ref name=":4">{{Cite journal|displayauthors=1|last=Almeida|first=Ana|date=December 2015|title=The mutational landscape of cutaneous T cell lymphoma and Sezary syndrome|url=|journal=Nature Genetics|volume=47|pages=|via=}}</ref><ref name=": | Numerical and structural alterations are common in SS. These include loss of 1p, 6q, and 10q with gains of 7 and 8q<ref name=":1" /><ref name=":4">{{Cite journal|displayauthors=1|last=Almeida|first=Ana|date=December 2015|title=The mutational landscape of cutaneous T cell lymphoma and Sezary syndrome|url=|journal=Nature Genetics|volume=47|pages=|via=}}</ref><ref name=":2">{{Cite journal|last=da Silva Almeida|first=Ana Carolina|last2=Abate|first2=Francesco|last3=Khiabanian|first3=Hossein|last4=Martinez-Escala|first4=Estela|last5=Guitart|first5=Joan|last6=Tensen|first6=Cornelis P.|last7=Vermeer|first7=Maarten H.|last8=Rabadan|first8=Raul|last9=Ferrando|first9=Adolfo|date=2015-12|title=The mutational landscape of cutaneous T cell lymphoma and Sézary syndrome|url=https://pubmed.ncbi.nlm.nih.gov/26551667|journal=Nature Genetics|volume=47|issue=12|pages=1465–1470|doi=10.1038/ng.3442|issn=1546-1718|pmc=4878831|pmid=26551667}}</ref>. Isochromosome 17q is a recurrent finding in SS<ref name=":0" />. | ||
Deletions are often associated with loss of tumor suppressor genes such as recurrent deletions involving 17p13.1 (TP53), 13q14.2 (RB1), 10q23.3 (PTEN) and 12p13.1 (CDKN1B). Focal chromosome 2p23.3 deletions (DNMT3A) were observed | Deletions are often associated with loss of tumor suppressor genes such as recurrent deletions involving 17p13.1 (TP53), 13q14.2 (RB1), 10q23.3 (PTEN) and 12p13.1 (CDKN1B). Focal chromosome 2p23.3 deletions (DNMT3A) were observed<ref name=":2" />. | ||
<blockquote class="blockedit"><center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
==Gene Mutations (SNV / INDEL)== | ==Gene Mutations (SNV/INDEL)== | ||
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent or common as well either disease defining and/or clinically significant. If a gene has multiple mechanisms depending on the type or site of the alteration, add multiple entries in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Details on clinical significance such as prognosis and other important information such as concomitant and mutually exclusive mutations can be provided in the notes section. Please include references throughout the table. Do not delete the table.'') </span> | |||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
!Gene | !Gene!!Genetic Alteration!!Tumor Suppressor Gene, Oncogene, Other!!Prevalence - | ||
! | Common >20%, Recurrent 5-20% or Rare <5% (Disease) | ||
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | |||
! | !Established Clinical Significance Per Guidelines - Yes or No (Source) | ||
!Notes | !Clinical Relevance Details/Other Notes | ||
|- | |- | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span>''EGFR'' | ||
<span class="blue-text">EXAMPLE:</span> | <br /> | ||
|<span class="blue-text">EXAMPLE:</span> Exon 18-21 activating mutations | |||
|<span class="blue-text">EXAMPLE:</span> Oncogene | |||
|<span class="blue-text">EXAMPLE:</span> Common (lung cancer) | |||
<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> T | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> Yes (NCCN) | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> Exons 18, 19, and 21 mutations are targetable for therapy. Exon 20 T790M variants cause resistance to first generation TKI therapy and are targetable by second and third generation TKIs (add references). | ||
|- | |||
<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> ''TP53''; Variable LOF mutations | ||
|<span class="blue-text">EXAMPLE:</span> | <br /> | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> Variable LOF mutations | ||
|<span class="blue-text">EXAMPLE:</span> Tumor Supressor Gene | |||
|<span class="blue-text">EXAMPLE:</span> Common (breast cancer) | |||
|<span class="blue-text">EXAMPLE:</span> P | |||
| | |||
|<span class="blue-text">EXAMPLE:</span> >90% are somatic; rare germline alterations associated with Li-Fraumeni syndrome (add reference). Denotes a poor prognosis in breast cancer. | |||
|- | |||
|<span class="blue-text">EXAMPLE:</span> ''BRAF''; Activating mutations | |||
|<span class="blue-text">EXAMPLE:</span> Activating mutations | |||
|<span class="blue-text">EXAMPLE:</span> Oncogene | |||
|<span class="blue-text">EXAMPLE:</span> Common (melanoma) | |||
|<span class="blue-text">EXAMPLE:</span> T | |||
| | |||
| | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
| | | | ||
| | | | ||
| | | | ||
|}Note: A more extensive list of mutations can be found in [https://www.cbioportal.org/ <u>cBioportal</u>], [https://cancer.sanger.ac.uk/cosmic <u>COSMIC</u>], and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content. | |||
|} | |||
Note: A more extensive list of mutations can be found in | |||
<blockquote class= | <blockquote class="blockedit">{{Box-round|title=v4:Gene Mutations (SNV/INDEL)|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
The mutational landscape of Sezary syndrome is complex and over 1000 different gene mutations have been identified. Mutational signature characterized by C>T substitutions at NpCpG trinucleotides and C>A substitutions at CpCpN trinucleotides and C>T substitutions at CpCpN and TpCpN trinulceotides have been identified<ref name=": | The mutational landscape of Sezary syndrome is complex and over 1000 different gene mutations have been identified. Mutational signature characterized by C>T substitutions at NpCpG trinucleotides and C>A substitutions at CpCpN trinucleotides and C>T substitutions at CpCpN and TpCpN trinulceotides have been identified<ref name=":2" />. | ||
''RHOA'' mutations have also been described in SS. Mutations (including single nucleotide mutations and copy number variants) in the JAK/STAT pathway likely result in the constitutive activation of ''STAT3'' in Sézary cells. Inactivating mutations in ''TP53'' and deletions of ''CDKN2A'' (p16INK4a) are frequent. Mutations in ''DNMT3A'' have been reported in SS<ref name=":0" />. | ''RHOA'' mutations have also been described in SS. Mutations (including single nucleotide mutations and copy number variants) in the JAK/STAT pathway likely result in the constitutive activation of ''STAT3'' in Sézary cells. Inactivating mutations in ''TP53'' and deletions of ''CDKN2A'' (p16INK4a) are frequent. Mutations in ''DNMT3A'' have been reported in SS<ref name=":0" />. | ||
Mutations in epigenetic regulator genes including TET2, CREBPP, KMT2C (MLL3) histone H3 lysine 4 (H3K4) methyltransferase, WI/SNF, and NuRD chromatin-remodeling complexes have been demonstrated as well<ref name=": | Mutations in epigenetic regulator genes including TET2, CREBPP, KMT2C (MLL3) histone H3 lysine 4 (H3K4) methyltransferase, WI/SNF, and NuRD chromatin-remodeling complexes have been demonstrated as well<ref name=":2" />. | ||
Recurrent mutations in TP53, ITPR1, DSC1 and PKHD1L1 are found in a cohort study by Prasad et al. The study found damaging mutations to ITPR1 in two Sezary Syndrome patients. ITPR1 mediates calcium release from the endoplasmic reticulum and may be functional partners with BCL2, which is an apoptosis suppressor. | Recurrent mutations in TP53, ITPR1, DSC1 and PKHD1L1 are found in a cohort study by Prasad et al. The study found damaging mutations to ITPR1 in two Sezary Syndrome patients. ITPR1 mediates calcium release from the endoplasmic reticulum and may be functional partners with BCL2, which is an apoptosis suppressor. | ||
Mutations in the p53, p15, p16, JunB, and PTEN genes are generally found in late-stage disease, suggesting that they are secondary genetic events after disease initiation<ref name=":3" />. | Mutations in the p53, p15, p16, JunB, and PTEN genes are generally found in late-stage disease, suggesting that they are secondary genetic events after disease initiation<ref name=":3">{{Cite journal|last=Hwang|first=Sam T.|last2=Janik|first2=John E.|last3=Jaffe|first3=Elaine S.|last4=Wilson|first4=Wyndham H.|date=2008-03-15|title=Mycosis fungoides and Sézary syndrome|url=https://pubmed.ncbi.nlm.nih.gov/18342689|journal=Lancet (London, England)|volume=371|issue=9616|pages=945–957|doi=10.1016/S0140-6736(08)60420-1|issn=1474-547X|pmid=18342689}}</ref>. | ||
<blockquote class="blockedit"><center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
==Epigenomic Alterations== | ==Epigenomic Alterations== | ||
| Line 291: | Line 319: | ||
==Genes and Main Pathways Involved== | ==Genes and Main Pathways Involved== | ||
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: | |||
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Please include references throughout the table. Do not delete the table.)''</span> | |||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome | !Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome | ||
|- | |- | ||
|<span class="blue-text">EXAMPLE:</span> BRAF and MAP2K1; Activating mutations | |<span class="blue-text">EXAMPLE:</span> ''BRAF'' and ''MAP2K1''; Activating mutations | ||
|<span class="blue-text">EXAMPLE:</span> MAPK signaling | |<span class="blue-text">EXAMPLE:</span> MAPK signaling | ||
|<span class="blue-text">EXAMPLE:</span> Increased cell growth and proliferation | |<span class="blue-text">EXAMPLE:</span> Increased cell growth and proliferation | ||
|- | |- | ||
|<span class="blue-text">EXAMPLE:</span> CDKN2A; Inactivating mutations | |<span class="blue-text">EXAMPLE:</span> ''CDKN2A''; Inactivating mutations | ||
|<span class="blue-text">EXAMPLE:</span> Cell cycle regulation | |<span class="blue-text">EXAMPLE:</span> Cell cycle regulation | ||
|<span class="blue-text">EXAMPLE:</span> Unregulated cell division | |<span class="blue-text">EXAMPLE:</span> Unregulated cell division | ||
|- | |- | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> ''KMT2C'' and ''ARID1A''; Inactivating mutations | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> Histone modification, chromatin remodeling | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> Abnormal gene expression program | ||
|- | |||
| | |||
| | |||
| | |||
|} | |} | ||
<blockquote class= | <blockquote class="blockedit">{{Box-round|title=v4:Genes and Main Pathways Involved|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
Loss of Fas expression, which is involved in T-cell apoptotic pathways, has also been reported. Specifically, changes affecting the Fas ligand is seen in 50-83% of cases. Loss of Fas expression is seen in 14-59% of cases<ref name=":3" />. | Loss of Fas expression, which is involved in T-cell apoptotic pathways, has also been reported. Specifically, changes affecting the Fas ligand is seen in 50-83% of cases. Loss of Fas expression is seen in 14-59% of cases<ref name=":3" />. | ||
Genes involved in NF-kB signaling, chromatin remodeling, and DNA damage response have also been found to be altered. Notably, alterations to signaling pathways including Jak/signal transducer and activator of transcription (STAT) signaling and cell-cycle checkpoint have been shown to be involved in the pathogenesis<ref name=": | Genes involved in NF-kB signaling, chromatin remodeling, and DNA damage response have also been found to be altered. Notably, alterations to signaling pathways including Jak/signal transducer and activator of transcription (STAT) signaling and cell-cycle checkpoint have been shown to be involved in the pathogenesis<ref name=":1" />.<br /> | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
==Genetic Diagnostic Testing Methods== | ==Genetic Diagnostic Testing Methods== | ||
| Line 337: | Line 373: | ||
==References== | ==References== | ||
<references /> | <references /> | ||
| Line 356: | Line 380: | ||
<nowiki>*</nowiki>''Citation of this Page'': “Sezary syndrome”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:Sezary_syndrome</nowiki>. | <nowiki>*</nowiki>''Citation of this Page'': “Sezary syndrome”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:Sezary_syndrome</nowiki>. | ||
[[Category:HAEM5]][[Category:DISEASE]][[Category:Diseases S]] | [[Category:HAEM5]] | ||
[[Category:DISEASE]] | |||
[[Category:Diseases S]] | |||