HAEM5:B lymphoblastic leukaemia/lymphoma with TCF3::PBX1 fusion: Difference between revisions

[checked revision][checked revision]
No edit summary
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 4: Line 4:
{{Under Construction}}
{{Under Construction}}


<blockquote class='blockedit'>{{Box-round|title=Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification|This page was converted to the new template on 2023-12-07. The original page can be found at [[HAEM4:B-Lymphoblastic Leukemia/Lymphoma with t(1;19)(q23;p13.3); TCF3-PBX1]].
<blockquote class="blockedit">{{Box-round|title=Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification|This page was converted to the new template on 2023-12-07. The original page can be found at [[HAEM4:B-Lymphoblastic Leukemia/Lymphoma with t(1;19)(q23;p13.3); TCF3-PBX1]].
}}</blockquote>
}}</blockquote>


Line 14: Line 14:


Linda D. Cooley, MD, MBA. Children's Mercy Kansas City, Kansas City, MO
Linda D. Cooley, MD, MBA. Children's Mercy Kansas City, Kansas City, MO
__TOC__
==WHO Classification of Disease==
==WHO Classification of Disease==


Line 39: Line 36:
|}
|}


==Definition / Description of Disease==
==Related Terminology==
Neoplasm of B-cell lineage precursor lymphoblasts where the blasts contain a translocation between ''PBX1'' at 1q23 and ''TCF3'' at 19p13.3.<ref name=":1">Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J (Eds): WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (Revised 4th edition). IARC: Lyon 2017</ref>


==Synonyms / Terminology==
''TCF3'' is also known as ''E2A.''
==Epidemiology / Prevalence==
The t(1;19) translocation is present in ~5% pediatric and ~3% adult B-ALL cases. The incidence of this translocation does not vary significantly with age, however, there is a high incidence (~12%) of this rearrangement in African-American children with B-ALL.<ref name=":0">{{Cite journal|last=Akkari|first=Yassmine M. N.|last2=Bruyere|first2=Helene|last3=Hagelstrom|first3=R. Tanner|last4=Kanagal-Shamanna|first4=Rashmi|last5=Liu|first5=Jie|last6=Luo|first6=Minjie|last7=Mikhail|first7=Fady M.|last8=Pitel|first8=Beth A.|last9=Raca|first9=Gordana|date=05 2020|title=Evidence-based review of genomic aberrations in B-lymphoblastic leukemia/lymphoma: Report from the cancer genomics consortium working group for lymphoblastic leukemia|url=https://pubmed.ncbi.nlm.nih.gov/32302940|journal=Cancer Genetics|volume=243|pages=52–72|doi=10.1016/j.cancergen.2020.03.001|issn=2210-7762|pmid=32302940}}</ref>
==Clinical Features==
Put your text here and fill in the table <span style="color:#0070C0">(''Instruction: Can include references in the table. Do not delete table.'') </span>
{| class="wikitable"
|'''Signs and Symptoms'''
|<span class="blue-text">EXAMPLE:</span> Asymptomatic (incidental finding on complete blood counts)
<span class="blue-text">EXAMPLE:</span> B-symptoms (weight loss, fever, night sweats)
<span class="blue-text">EXAMPLE:</span> Fatigue
<span class="blue-text">EXAMPLE:</span> Lymphadenopathy (uncommon)
|-
|'''Laboratory Findings'''
|<span class="blue-text">EXAMPLE:</span> Cytopenias
<span class="blue-text">EXAMPLE:</span> Lymphocytosis (low level)
|}
<blockquote class='blockedit'>{{Box-round|title=v4:Clinical Features|The content below was from the old template. Please incorporate above.}}</blockquote>
No unique clinical features that distinguish this entity from other types of B-ALL. Common clinical features of B-ALL include:
*Fatigue
*Infections
*Easy bruising/bleeding
Other symptoms present may include:
*Achiness
*Fever
*Night sweats
*Weight loss
These features manifest clinically as anemia, neutropenia, and/or thrombocytopenia. <ref name=":0" />
<blockquote class="blockedit">
<center><span style="color:Maroon">'''End of V4 Section'''</span>
----
</blockquote>
==Sites of Involvement==
Bone marrow, Blood, Central Nervous System (CNS) <ref name=":0" />
==Morphologic Features==
There are no unique morphological  features that distinguish this entity from other types of ALL.<ref name=":1" />
==Immunophenotype==
Put your text here and fill in the table <span style="color:#0070C0">(''Instruction: Can include references in the table. Do not delete table.'') </span>
{| class="wikitable sortable"
|-
!Finding!!Marker
|-
|Positive (universal)||<span class="blue-text">EXAMPLE:</span> CD1
|-
|Positive (subset)||<span class="blue-text">EXAMPLE:</span> CD2
|-
|Negative (universal)||<span class="blue-text">EXAMPLE:</span> CD3
|-
|Negative (subset)||<span class="blue-text">EXAMPLE:</span> CD4
|}
<blockquote class='blockedit'>{{Box-round|title=v4:Immunophenotype|The content below was from the old template. Please incorporate above.}}</blockquote>
Blasts with pre-B phenotype, positive for CD19, CD10 and cytoplasmic mu heavy chain. <ref name=":1" />
<blockquote class="blockedit">
<center><span style="color:Maroon">'''End of V4 Section'''</span>
----
</blockquote>
==WHO Essential and Desirable Genetic Diagnostic Criteria==
<span style="color:#0070C0">(''Instructions: The table will have the diagnostic criteria from the WHO book <u>autocompleted</u>; remove any <u>non</u>-genetics related criteria. If applicable, add text about other classification'' ''systems that define this entity and specify how the genetics-related criteria differ.'')</span>
{| class="wikitable"
|+
|WHO Essential Criteria (Genetics)*
|
|-
|WHO Desirable Criteria (Genetics)*
|
|-
|Other Classification
|
|}
<nowiki>*</nowiki>Note: These are only the genetic/genomic criteria. Additional diagnostic criteria can be found in the [https://tumourclassification.iarc.who.int/home <u>WHO Classification of Tumours</u>].
==Related Terminology==
<span style="color:#0070C0">(''Instructions: The table will have the related terminology from the WHO <u>autocompleted</u>.)''</span>
{| class="wikitable"
{| class="wikitable"
|+
|+
|Acceptable
|Acceptable
|
|N/A
|-
|-
|Not Recommended
|Not Recommended
|
|B-lymphoblastic leukaemia/lymphoma with E2A::PBX1
|}
|}


Line 213: Line 110:
|}
|}


<blockquote class='blockedit'>{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}}</blockquote>
<blockquote class="blockedit">{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}}</blockquote>


The breakpoints of the t(1;19) translocation  typically fall within intron 16 of ''TCF3'' and intron 3 of ''PBX1''. <ref name=":0" />
The breakpoints of the t(1;19) translocation  typically fall within intron 16 of ''TCF3'' and intron 3 of ''PBX1''. <ref name=":0">{{Cite journal|last=Akkari|first=Yassmine M. N.|last2=Bruyere|first2=Helene|last3=Hagelstrom|first3=R. Tanner|last4=Kanagal-Shamanna|first4=Rashmi|last5=Liu|first5=Jie|last6=Luo|first6=Minjie|last7=Mikhail|first7=Fady M.|last8=Pitel|first8=Beth A.|last9=Raca|first9=Gordana|date=05 2020|title=Evidence-based review of genomic aberrations in B-lymphoblastic leukemia/lymphoma: Report from the cancer genomics consortium working group for lymphoblastic leukemia|url=https://pubmed.ncbi.nlm.nih.gov/32302940|journal=Cancer Genetics|volume=243|pages=52–72|doi=10.1016/j.cancergen.2020.03.001|issn=2210-7762|pmid=32302940}}</ref>


{| class="wikitable sortable"
{| class="wikitable sortable"
Line 233: Line 130:




<blockquote class='blockedit'>{{Box-round|title=v4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).|Please incorporate this section into the relevant tables found in:
<blockquote class="blockedit">{{Box-round|title=v4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).|Please incorporate this section into the relevant tables found in:
* Chromosomal Rearrangements (Gene Fusions)
* Chromosomal Rearrangements (Gene Fusions)
* Individual Region Genomic Gain/Loss/LOH
* Individual Region Genomic Gain/Loss/LOH
Line 239: Line 136:
* Gene Mutations (SNV/INDEL)}}</blockquote>
* Gene Mutations (SNV/INDEL)}}</blockquote>


The t(1;19) diagnosis was associated with high risk and poor prognosis in earlier studies, however, modern intensive chemotherapy has changed this paradigm. A recent (2021) study showed that patients with ''TCF3-PBX1'' had intermediate rates of 5-year event-free survival (80-88.2%). Despite the favorable prognosis of this subtype of ALL, there is an increased relative risk of central nervous system relapse associated with this translocation.  <ref name=":1" /><ref name=":0" /><ref>{{Cite journal|last=Jeha|first=Sima|last2=Choi|first2=John|last3=Roberts|first3=Kathryn G.|last4=Pei|first4=Deqing|last5=Coustan-Smith|first5=Elaine|last6=Inaba|first6=Hiroto|last7=Rubnitz|first7=Jeffrey E.|last8=Ribeiro|first8=Raul C.|last9=Gruber|first9=Tanja A.|date=2021-07|title=Clinical significance of novel subtypes of acute lymphoblastic leukemia in the context of minimal residual disease-directed therapy|url=https://pubmed.ncbi.nlm.nih.gov/34250504|journal=Blood Cancer Discovery|volume=2|issue=4|pages=326–337|doi=10.1158/2643-3230.bcd-20-0229|issn=2643-3249|pmc=8265990|pmid=34250504}}</ref>
The t(1;19) diagnosis was associated with high risk and poor prognosis in earlier studies, however, modern intensive chemotherapy has changed this paradigm. A recent (2021) study showed that patients with ''TCF3-PBX1'' had intermediate rates of 5-year event-free survival (80-88.2%). Despite the favorable prognosis of this subtype of ALL, there is an increased relative risk of central nervous system relapse associated with this translocation.  <ref name=":1">Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J (Eds): WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (Revised 4th edition). IARC: Lyon 2017</ref><ref name=":0" /><ref>{{Cite journal|last=Jeha|first=Sima|last2=Choi|first2=John|last3=Roberts|first3=Kathryn G.|last4=Pei|first4=Deqing|last5=Coustan-Smith|first5=Elaine|last6=Inaba|first6=Hiroto|last7=Rubnitz|first7=Jeffrey E.|last8=Ribeiro|first8=Raul C.|last9=Gruber|first9=Tanja A.|date=2021-07|title=Clinical significance of novel subtypes of acute lymphoblastic leukemia in the context of minimal residual disease-directed therapy|url=https://pubmed.ncbi.nlm.nih.gov/34250504|journal=Blood Cancer Discovery|volume=2|issue=4|pages=326–337|doi=10.1158/2643-3230.bcd-20-0229|issn=2643-3249|pmc=8265990|pmid=34250504}}</ref>


<blockquote class="blockedit">
<blockquote class="blockedit">
Line 251: Line 148:
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
!Chr #!!'''Gain, Loss, Amp, LOH'''!!'''Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size]'''!!'''Relevant Gene(s)'''
!Chr #!!Gain, Loss, Amp, LOH!!Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size]!!Relevant Gene(s)
!'''Diagnostic, Prognostic, and Therapeutic Significance - D, P, T'''
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T
!'''Established Clinical Significance Per Guidelines - Yes or No (Source)'''
!Established Clinical Significance Per Guidelines - Yes or No (Source)
!'''Clinical Relevance Details/Other Notes'''
!Clinical Relevance Details/Other Notes
|-
|-
|<span class="blue-text">EXAMPLE:</span>
|<span class="blue-text">EXAMPLE:</span>
Line 301: Line 198:
|}
|}


<blockquote class='blockedit'>{{Box-round|title=v4:Genomic Gain/Loss/LOH|The content below was from the old template. Please incorporate above.}}</blockquote>
<blockquote class="blockedit">{{Box-round|title=v4:Genomic Gain/Loss/LOH|The content below was from the old template. Please incorporate above.}}</blockquote>


Secondary somatic copy number aberrations are not frequently seen in ''TCF3-PBX1'' B-ALL
Secondary somatic copy number aberrations are not frequently seen in ''TCF3-PBX1'' B-ALL
Line 316: Line 213:
!Chromosomal Pattern
!Chromosomal Pattern
!Molecular Pathogenesis
!Molecular Pathogenesis
!'''Prevalence -'''
!Prevalence -  
'''Common >20%, Recurrent 5-20% or Rare <5% (Disease)'''
Common >20%, Recurrent 5-20% or Rare <5% (Disease)
!'''Diagnostic, Prognostic, and Therapeutic Significance - D, P, T'''
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T
!'''Established Clinical Significance Per Guidelines - Yes or No (Source)'''
!Established Clinical Significance Per Guidelines - Yes or No (Source)
!'''Clinical Relevance Details/Other Notes'''
!Clinical Relevance Details/Other Notes
|-
|-
|<span class="blue-text">EXAMPLE:</span>
|<span class="blue-text">EXAMPLE:</span>
Line 346: Line 243:
|}
|}


<blockquote class='blockedit'>{{Box-round|title=v4:Characteristic Chromosomal Aberrations / Patterns|The content below was from the old template. Please incorporate above.}}</blockquote>
<blockquote class="blockedit">{{Box-round|title=v4:Characteristic Chromosomal Aberrations / Patterns|The content below was from the old template. Please incorporate above.}}</blockquote>


The t(1;19) translocation can be balanced or unbalanced. The unbalanced form has a der(19) resulting in trisomy of 1q distal to PBX1.<ref name=":2">Meloni-Ehrig A., (2013). The principles of clinical cytogenetics. 3rd edition. Steven L. Gersen and Martha B. Keagle , Editors. Springer. DOI 10.1007/978-1-4419-1688-4. p327-329.</ref>  
The t(1;19) translocation can be balanced or unbalanced. The unbalanced form has a der(19) resulting in trisomy of 1q distal to PBX1.<ref name=":2">Meloni-Ehrig A., (2013). The principles of clinical cytogenetics. 3rd edition. Steven L. Gersen and Martha B. Keagle , Editors. Springer. DOI 10.1007/978-1-4419-1688-4. p327-329.</ref>  
Line 360: Line 257:
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
!Gene!!'''Genetic Alteration'''!!'''Tumor Suppressor Gene, Oncogene, Other'''!!'''Prevalence -'''
!Gene!!Genetic Alteration!!Tumor Suppressor Gene, Oncogene, Other!!Prevalence -
'''Common >20%, Recurrent 5-20% or Rare <5% (Disease)'''
Common >20%, Recurrent 5-20% or Rare <5% (Disease)
!'''Diagnostic, Prognostic, and Therapeutic Significance - D, P, T  '''
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T  
!'''Established Clinical Significance Per Guidelines - Yes or No (Source)'''
!Established Clinical Significance Per Guidelines - Yes or No (Source)
!'''Clinical Relevance Details/Other Notes'''
!Clinical Relevance Details/Other Notes
|-
|-
|<span class="blue-text">EXAMPLE:</span>''EGFR''
|<span class="blue-text">EXAMPLE:</span>''EGFR''
Line 402: Line 299:
|}Note: A more extensive list of mutations can be found in [https://www.cbioportal.org/ <u>cBioportal</u>], [https://cancer.sanger.ac.uk/cosmic <u>COSMIC</u>], and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
|}Note: A more extensive list of mutations can be found in [https://www.cbioportal.org/ <u>cBioportal</u>], [https://cancer.sanger.ac.uk/cosmic <u>COSMIC</u>], and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.


<blockquote class='blockedit'>{{Box-round|title=v4:Gene Mutations (SNV/INDEL)|The content below was from the old template. Please incorporate above.}}</blockquote>
<blockquote class="blockedit">{{Box-round|title=v4:Gene Mutations (SNV/INDEL)|The content below was from the old template. Please incorporate above.}}</blockquote>


Secondary somatic DNA mutations are not frequently seen in ''TCF3-PBX1'' B-ALL. <ref name=":0" />
Secondary somatic DNA mutations are not frequently seen in ''TCF3-PBX1'' B-ALL. <ref name=":0" />
Line 447: Line 344:
|}
|}


<blockquote class='blockedit'>{{Box-round|title=v4:Genes and Main Pathways Involved|The content below was from the old template. Please incorporate above.}}</blockquote>
<blockquote class="blockedit">{{Box-round|title=v4:Genes and Main Pathways Involved|The content below was from the old template. Please incorporate above.}}</blockquote>


''TCF3'' gene at 19p13.3 is important during early lymphocyte development, whereas ''PBX1'' at 1q23 is a component of a transcriptional complex that regulates embryogenesis and hematopoiesis. Fusion protein resulting from the TCF3-PBX1 translocation is a transcriptional activator which likely interferes with the normal function of these genes. Expression of this fusion protein is thought to interfere with key regulatory pathways such as WNT and apoptosis/cell cycle control pathways which may drive a leukemic process. The DNA-binding and protein dimerization domains of PBX1 replaces the TCF3 helix-loop-helix DNA-binding motif in ''TCF3-PBX1'' fusion. The remaining transcriptional activating domains of TCF3 leads to constitutive nuclear localization and transformation of PBX1 into an oncogenic transcriptional factor <ref>{{Cite journal|last=Diakos|first=Christofer|last2=Xiao|first2=Yuanyuan|last3=Zheng|first3=Shichun|last4=Kager|first4=Leo|last5=Dworzak|first5=Michael|last6=Wiemels|first6=Joseph L.|date=2014|title=Direct and indirect targets of the E2A-PBX1 leukemia-specific fusion protein|url=https://pubmed.ncbi.nlm.nih.gov/24503810|journal=PloS One|volume=9|issue=2|pages=e87602|doi=10.1371/journal.pone.0087602|issn=1932-6203|pmc=3913655|pmid=24503810}}</ref><ref name=":1" /><ref name=":0" />
''TCF3'' gene at 19p13.3 is important during early lymphocyte development, whereas ''PBX1'' at 1q23 is a component of a transcriptional complex that regulates embryogenesis and hematopoiesis. Fusion protein resulting from the TCF3-PBX1 translocation is a transcriptional activator which likely interferes with the normal function of these genes. Expression of this fusion protein is thought to interfere with key regulatory pathways such as WNT and apoptosis/cell cycle control pathways which may drive a leukemic process. The DNA-binding and protein dimerization domains of PBX1 replaces the TCF3 helix-loop-helix DNA-binding motif in ''TCF3-PBX1'' fusion. The remaining transcriptional activating domains of TCF3 leads to constitutive nuclear localization and transformation of PBX1 into an oncogenic transcriptional factor <ref>{{Cite journal|last=Diakos|first=Christofer|last2=Xiao|first2=Yuanyuan|last3=Zheng|first3=Shichun|last4=Kager|first4=Leo|last5=Dworzak|first5=Michael|last6=Wiemels|first6=Joseph L.|date=2014|title=Direct and indirect targets of the E2A-PBX1 leukemia-specific fusion protein|url=https://pubmed.ncbi.nlm.nih.gov/24503810|journal=PloS One|volume=9|issue=2|pages=e87602|doi=10.1371/journal.pone.0087602|issn=1932-6203|pmc=3913655|pmid=24503810}}</ref><ref name=":1" /><ref name=":0" />
Line 482: Line 379:
(use the "Cite" icon at the top of the page) <span style="color:#0070C0">(''Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted''</span><span style="color:#0070C0">''.''</span><span style="color:#0070C0">)</span> <references />
(use the "Cite" icon at the top of the page) <span style="color:#0070C0">(''Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted''</span><span style="color:#0070C0">''.''</span><span style="color:#0070C0">)</span> <references />


'''
<br />


==Notes==
==Notes==
<nowiki>*</nowiki>Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage).  Additional global feedback or concerns are also welcome.
<nowiki>*</nowiki>Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage).  Additional global feedback or concerns are also welcome.




Line 502: Line 398:


<nowiki>*</nowiki>''Citation of this Page'': “B lymphoblastic leukaemia/lymphoma with TCF3::PBX1 fusion”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:B_lymphoblastic_leukaemia/lymphoma_with_TCF3::PBX1_fusion</nowiki>.
<nowiki>*</nowiki>''Citation of this Page'': “B lymphoblastic leukaemia/lymphoma with TCF3::PBX1 fusion”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:B_lymphoblastic_leukaemia/lymphoma_with_TCF3::PBX1_fusion</nowiki>.
[[Category:HAEM5]][[Category:DISEASE]][[Category:Diseases B]]
[[Category:HAEM5]]
[[Category:DISEASE]]
[[Category:Diseases B]]