HAEM5:Acute myeloid leukaemia with CEBPA mutation: Difference between revisions
| [checked revision] | [pending revision] |
No edit summary |
Bailey.Glen (talk | contribs) No edit summary |
||
| (9 intermediate revisions by 3 users not shown) | |||
| Line 35: | Line 35: | ||
|} | |} | ||
==Related Terminology== | ==Related Terminology== | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
|Acceptable | |Acceptable | ||
| | |Acute myeloid leukaemia with biallelic mutation of CEBPA | ||
|- | |- | ||
|Not Recommended | |Not Recommended | ||
| | |N/A | ||
|} | |} | ||
| Line 63: | Line 49: | ||
None. | |||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
| Line 89: | Line 75: | ||
''DUX4'' has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references). | ''DUX4'' has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references). | ||
|- | |- | ||
| | | | ||
| Line 122: | Line 85: | ||
| | | | ||
|} | |} | ||
==Individual Region Genomic Gain/Loss/LOH== | ==Individual Region Genomic Gain/Loss/LOH== | ||
Subset of cases have abnormal karyotype, del(9q) is common but does not make a diagnosis of AML with myelodysplasia related changes<ref name=":6">{{Cite journal|last=Frohling|first=Stefan|last2=Schlenk|first2=Richard F.|last3=Krauter|first3=Jurgen|last4=Ganser|first4=Arnold|last5=Thiede|first5=Christian|last6=Ehninger|first6=Gerhard|last7=Haase|first7=Detlef|last8=Harder|first8=Lana|last9=Scholl|first9=Claudia|date=2004-11-16|title=Acute Myeloid Leukemia with Deletion 9q Is Associated with CEBPA Loss-of-Function Mutations.|url=https://www.sciencedirect.com/science/article/pii/S0006497118667941|journal=Blood|volume=104|issue=11|pages=2896|doi=10.1182/blood.V104.11.2896.2896|issn=0006-4971}}</ref><ref name=":7">{{Cite journal|last=Fröhling|first=Stefan|last2=Schlenk|first2=Richard F.|last3=Krauter|first3=Jürgen|last4=Thiede|first4=Christian|last5=Ehninger|first5=Gerhard|last6=Haase|first6=Detlef|last7=Harder|first7=Lana|last8=Kreitmeier|first8=Sylvia|last9=Scholl|first9=Claudia|date=2005|title=Acute myeloid leukemia with deletion 9q within a noncomplex karyotype is associated with CEBPA loss-of-function mutations|url=https://onlinelibrary.wiley.com/doi/10.1002/gcc.20152|journal=Genes, Chromosomes and Cancer|language=en|volume=42|issue=4|pages=427–432|doi=10.1002/gcc.20152|issn=1098-2264}}</ref>. | |||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
!Chr #!! | !Chr #!!Gain, Loss, Amp, LOH!!Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size]!!Relevant Gene(s) | ||
! | !Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | ||
! | !Established Clinical Significance Per Guidelines - Yes or No (Source) | ||
! | !Clinical Relevance Details/Other Notes | ||
|- | |- | ||
| | |9 | ||
| | |Loss | ||
| | |9q | ||
| | |Unknown | ||
| | |P | ||
| | |No | ||
| | |A collaborative intergroup study has been initiated to define whether the relatively good prognosis associated with del(9q) is related to the presence of a ''CEBPA'' mutation<ref name=":6" />. | ||
|} | |} | ||
==Characteristic Chromosomal or Other Global Mutational Patterns== | ==Characteristic Chromosomal or Other Global Mutational Patterns== | ||
None. | |||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
!Chromosomal Pattern | !Chromosomal Pattern | ||
!Molecular Pathogenesis | !Molecular Pathogenesis | ||
! | !Prevalence - | ||
Common >20%, Recurrent 5-20% or Rare <5% (Disease) | |||
! | !Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | ||
! | !Established Clinical Significance Per Guidelines - Yes or No (Source) | ||
! | !Clinical Relevance Details/Other Notes | ||
|- | |- | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> Co-deletion of 1p and 18q | ||
Co-deletion of 1p and 18q | |||
|<span class="blue-text">EXAMPLE:</span> See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). | |<span class="blue-text">EXAMPLE:</span> See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). | ||
|<span class="blue-text">EXAMPLE:</span> Common (Oligodendroglioma) | |<span class="blue-text">EXAMPLE:</span> Common (Oligodendroglioma) | ||
| Line 265: | Line 140: | ||
| | | | ||
|} | |} | ||
==Gene Mutations (SNV/INDEL)== | |||
Patients with biallelic ''CEBPA'' mutations and a normal karyotype have a more favorable prognosis than those with monoallelic or no ''CEBPA'' mutations, with higher complete remission rates and longer disease-free survival, relapse-free survival, event-free survival, and overall survival<ref name=":0">Arber DA, et al., (2017). Acute myeloid leukaemia with recurrent genetic abnormalities, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. Revised 4th Edition. IARC Press: Lyon, France, p142-144.</ref>. | |||
Patients with abnormal karyotypes (but not complex karyotypes) and biallelic ''CEBPA'' mutations also have longer disease-free survival, event-free survival, and overall survival when compared to patients with monoallelic or no ''CEBPA'' mutations<ref name=":0" />. Detection of bi''CEBPA'' should raise possibility of germline mutation. Germline testing may be considered in patients with persistent ''CEBPA'' mutations following morphologic remission or in patients with family history of leukemia<ref name=":8">{{Cite journal|last=Tawana|first=Kiran|last2=Wang|first2=Jun|last3=Renneville|first3=Aline|last4=Bödör|first4=Csaba|last5=Hills|first5=Robert|last6=Loveday|first6=Chey|last7=Savic|first7=Aleksandar|last8=Van Delft|first8=Frederik W.|last9=Treleaven|first9=Jennifer|date=2015-09-03|title=Disease evolution and outcomes in familial AML with germline CEBPA mutations|url=https://pubmed.ncbi.nlm.nih.gov/26162409|journal=Blood|volume=126|issue=10|pages=1214–1223|doi=10.1182/blood-2015-05-647172|issn=1528-0020|pmid=26162409}}</ref>. | |||
Pathogenic mutations in ''CEBPA'' are predominantly insertion/deletion frameshift mutations in the N-terminal TAD region and in-frame C-terminal bZIP mutations. Patients with bi''CEBPA'' and smbZIP-''CEBPA'' are younger and have higher white blood cell counts than those with a single mutation in the N-terminal TAD region<ref name=":5">{{Cite journal|last=Taube|first=Franziska|last2=Georgi|first2=Julia Annabell|last3=Kramer|first3=Michael|last4=Stasik|first4=Sebastian|last5=Middeke|first5=Jan Moritz|last6=Röllig|first6=Christoph|last7=Krug|first7=Utz|last8=Krämer|first8=Alwin|last9=Scholl|first9=Sebastian|date=2022-01-06|title=CEBPA mutations in 4708 patients with acute myeloid leukemia: differential impact of bZIP and TAD mutations on outcome|url=https://pubmed.ncbi.nlm.nih.gov/34320176|journal=Blood|volume=139|issue=1|pages=87–103|doi=10.1182/blood.2020009680|issn=1528-0020|pmid=34320176}}</ref>. No particular mutational hotspots exist but the following table records the most reported mutations in the COSMIC database (frequency based on a count out of 1523 mutations): | |||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
!Gene!! | !Gene!!Genetic Alteration!!Tumor Suppressor Gene, Oncogene, Other!!Prevalence - | ||
Common >20%, Recurrent 5-20% or Rare <5% (Disease) | |||
! | !Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | ||
! | !Established Clinical Significance Per Guidelines - Yes or No (Source) | ||
! | !Clinical Relevance Details/Other Notes | ||
|- | |- | ||
| | |''CEBPA'' | ||
<br /> | <br /> | ||
|< | |c.939_940insAAG, p.K313_V314insK | ||
|Oncogene | |||
|Recurrent (AML) | |||
|D, P, T | |||
|< | |Yes (NCCN) | ||
|AML with ''CEBPA'' mutation constitutes ~5% pf pediatric AML and 5-11% adult AML<ref name=":9">{{Cite journal|last=Tarlock|first=Katherine|last2=Lamble|first2=Adam J.|last3=Wang|first3=Yi-Cheng|last4=Gerbing|first4=Robert B.|last5=Ries|first5=Rhonda E.|last6=Loken|first6=Michael R.|last7=Brodersen|first7=Lisa Eidenschink|last8=Pardo|first8=Laura|last9=Leonti|first9=Amanda|date=2021-09-30|title=CEBPA-bZip mutations are associated with favorable prognosis in de novo AML: a report from the Children's Oncology Group|url=https://pubmed.ncbi.nlm.nih.gov/33951732|journal=Blood|volume=138|issue=13|pages=1137–1147|doi=10.1182/blood.2020009652|issn=1528-0020|pmc=8570058|pmid=33951732}}</ref><ref name=":10">{{Cite journal|last=Wakita|first=Satoshi|last2=Sakaguchi|first2=Masahiro|last3=Oh|first3=Iekuni|last4=Kako|first4=Shinichi|last5=Toya|first5=Takashi|last6=Najima|first6=Yuho|last7=Doki|first7=Noriko|last8=Kanda|first8=Junya|last9=Kuroda|first9=Junya|date=2022-01-11|title=Prognostic impact of CEBPA bZIP domain mutation in acute myeloid leukemia|url=https://pubmed.ncbi.nlm.nih.gov/34448807|journal=Blood Advances|volume=6|issue=1|pages=238–247|doi=10.1182/bloodadvances.2021004292|issn=2473-9537|pmc=8753195|pmid=34448807}}</ref><ref name=":5" />. Accounts for 4 - 9% of AML diagnoses in children and young adults. Less common in older patients. | |||
AML with ''CEBPA'' mutation is associated with favorable prognosis<ref>Pollyea DA, Altman JK, (2025). NCCN Clinical Practice Guidelines in Oncology: AML. Version 2. Available at: NCCN.org.</ref><ref name=":11">Tumours, 5th edition, IARC Press:Lyon, 2024. Online at: WHO Classification of Tumours.</ref>. bi''CEBPA'' accounts for 2.8% of AML cases, 91% bi''CEBPA'' AML cases with bZIP mutation and favorable prognosis, only 9% bi''CEBPA'' AML cases without bZIP mutation and conflict prognosis<ref>{{Cite journal|last=Wouters|first=Bas J.|last2=Löwenberg|first2=Bob|last3=Erpelinck-Verschueren|first3=Claudia A. J.|last4=van Putten|first4=Wim L. J.|last5=Valk|first5=Peter J. M.|last6=Delwel|first6=Ruud|date=2009-03-26|title=Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome|url=https://pubmed.ncbi.nlm.nih.gov/19171880|journal=Blood|volume=113|issue=13|pages=3088–3091|doi=10.1182/blood-2008-09-179895|issn=1528-0020|pmc=2662648|pmid=19171880}}</ref><ref>{{Cite journal|last=Dufour|first=Annika|last2=Schneider|first2=Friederike|last3=Metzeler|first3=Klaus H.|last4=Hoster|first4=Eva|last5=Schneider|first5=Stephanie|last6=Zellmeier|first6=Evelyn|last7=Benthaus|first7=Tobias|last8=Sauerland|first8=Maria-Cristina|last9=Berdel|first9=Wolfgang E.|date=2010-02-01|title=Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome|url=https://pubmed.ncbi.nlm.nih.gov/20038735|journal=Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology|volume=28|issue=4|pages=570–577|doi=10.1200/JCO.2008.21.6010|issn=1527-7755|pmid=20038735}}</ref><ref>{{Cite journal|last=Green|first=Claire L.|last2=Koo|first2=Kenneth K.|last3=Hills|first3=Robert K.|last4=Burnett|first4=Alan K.|last5=Linch|first5=David C.|last6=Gale|first6=Rosemary E.|date=2010-06-01|title=Prognostic significance of CEBPA mutations in a large cohort of younger adult patients with acute myeloid leukemia: impact of double CEBPA mutations and the interaction with FLT3 and NPM1 mutations|url=https://pubmed.ncbi.nlm.nih.gov/20439648|journal=Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology|volume=28|issue=16|pages=2739–2747|doi=10.1200/JCO.2009.26.2501|issn=1527-7755|pmid=20439648}}</ref>. Single mutation-''CEBPA'' accounts for 2.3% of AML cases, 32% of ''CEBPA'' single-mutation cases with bZIP mutation and favorable prognosis, while 68% of ''CEBPA'' single-mutation cases without bZIP mutation and show similar prognosis to that of AML with wildtype ''CEBPA''<ref name=":11" />. smbZIP-''CEBPA'' AML shows similar favorable prognosis with bi''CEBPA'' (Children and adults aged up to 70 years)<ref name=":10" /><ref name=":5" /><ref name=":9" />'','' justifying the inclusion of smbZIP-''CEBPA'' subset''.'' | |||
The treatment approach involves similar induction and consolidation methods as other types of AML, specifically the 7+3 regimen (cytarabine and anthracycline) followed by consolidation with either cytarabine or azacitidine. There may be potential benefits from a stem cell transplant; however, it's important to note that a family member with a germline ''CEBPA'' mutation cannot be used as a donor. Relapsed patients have favorable prognosis as well<ref>{{Cite journal|last=Schlenk|first=Richard F.|last2=Taskesen|first2=Erdogan|last3=van Norden|first3=Yvette|last4=Krauter|first4=Jürgen|last5=Ganser|first5=Arnold|last6=Bullinger|first6=Lars|last7=Gaidzik|first7=Verena I.|last8=Paschka|first8=Peter|last9=Corbacioglu|first9=Andrea|date=2013-08-29|title=The value of allogeneic and autologous hematopoietic stem cell transplantation in prognostically favorable acute myeloid leukemia with double mutant CEBPA|url=https://doi.org/10.1182/blood-2013-05-503847|journal=Blood|volume=122|issue=9|pages=1576–1582|doi=10.1182/blood-2013-05-503847|issn=0006-4971}}</ref>. There is also a propose of a new algorithm for the treatment of these patients, including both familial and sporadic ''CEBPA'' mutated AML patients (Figure3)<ref>{{Cite journal|last=Su|first=Long|last2=Shi|first2=Yuan-Yuan|last3=Liu|first3=Zeng-Yan|last4=Gao|first4=Su-Jun|date=2022|title=Acute Myeloid Leukemia With CEBPA Mutations: Current Progress and Future Directions|url=https://pubmed.ncbi.nlm.nih.gov/35178345|journal=Frontiers in Oncology|volume=12|pages=806137|doi=10.3389/fonc.2022.806137|issn=2234-943X|pmc=8844020|pmid=35178345}}</ref>. | |||
|- | |- | ||
| | |''CEBPA'' | ||
<br /> | <br /> | ||
| | |c.68_69insC, p.H24fs*84 | ||
| | |Oncogene | ||
| | |Recurrent (AML) | ||
| | |D, P, T | ||
|Yes (NCCN) | |||
| | | | ||
|- | |- | ||
| | |''CEBPA'' | ||
| | |c.247delC, p.Q83fs*77 | ||
| | |Oncogene | ||
| | |Recurrent (AML) | ||
| | |D, P, T | ||
|Yes (NCCN) | |||
| | | | ||
|- | |||
|''CEBPA'' | |||
|c.936_937insCAG, p.Q312_K313insQ | |||
|Oncogene | |||
|Recurrent (AML) | |||
|D, P, T | |||
|Yes (NCCN) | |||
| | | | ||
|- | |- | ||
| | |''CEBPA'' | ||
| | |c.912_913insTTG, p.K304_Q305insL | ||
| | |Oncogene | ||
| | |Recurrent (AML) | ||
| | |D, P, T | ||
| | |Yes (NCCN) | ||
| | | | ||
|}Note: A more extensive list of mutations can be found in [https://www.cbioportal.org/ <u>cBioportal</u>], [https://cancer.sanger.ac.uk/cosmic <u>COSMIC</u>], and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content. | |}Note: A more extensive list of mutations can be found in [https://www.cbioportal.org/ <u>cBioportal</u>], [https://cancer.sanger.ac.uk/cosmic <u>COSMIC</u>], and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content. | ||
Most of (>70%) cases associated with normal karyotype; del(9q) may also be seen<ref name=":6" /><ref name=":7" />. Concurrent mutations in ''NPM1'' and ''FLT3'' are seen less frequently (5-9%) in individuals with biallelic ''CEBPA'' mutations than in those with no or monoallelic mutations<ref name=":2">{{Cite journal|last=Taskesen|first=Erdogan|last2=Bullinger|first2=Lars|last3=Corbacioglu|first3=Andrea|last4=Sanders|first4=Mathijs A.|last5=Erpelinck|first5=Claudia A. J.|last6=Wouters|first6=Bas J.|last7=van der Poel-van de Luytgaarde|first7=Sonja C.|last8=Damm|first8=Frederik|last9=Krauter|first9=Jürgen|date=2011|title=Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity|url=https://www.ncbi.nlm.nih.gov/pubmed/21177436|journal=Blood|volume=117|issue=8|pages=2469–2475|doi=10.1182/blood-2010-09-307280|issn=1528-0020|pmid=21177436}}</ref>. Conversely, mutations in ''GATA2'' appear to occur more often (39%) in ''CEBPA'' single- and double-mutants<ref>{{Cite journal|last=Green|first=Claire L.|last2=Tawana|first2=Kiran|last3=Hills|first3=Robert K.|last4=Bödör|first4=Csaba|last5=Fitzgibbon|first5=Jude|last6=Inglott|first6=Sarah|last7=Ancliff|first7=Phil|last8=Burnett|first8=Alan K.|last9=Linch|first9=David C.|date=2013|title=GATA2 mutations in sporadic and familial acute myeloid leukaemia patients with CEBPA mutations|url=https://www.ncbi.nlm.nih.gov/pubmed/23560626|journal=British Journal of Haematology|volume=161|issue=5|pages=701–705|doi=10.1111/bjh.12317|issn=1365-2141|pmid=23560626}}</ref>. The prognostic significance of these concomitant mutations is, however, unclear. Biallelic ''CEBPA'' mutations appear to confer a positive prognostic effect regardless of concomitant mutations. | |||
Concurrent mutations in ''NPM1'' and ''FLT3'' are seen less frequently in individuals with biallelic ''CEBPA'' mutations than in those with no or monoallelic mutations<ref name=":2">{{Cite journal|last=Taskesen|first=Erdogan|last2=Bullinger|first2=Lars|last3=Corbacioglu|first3=Andrea|last4=Sanders|first4=Mathijs A.|last5=Erpelinck|first5=Claudia A. J.|last6=Wouters|first6=Bas J.|last7=van der Poel-van de Luytgaarde|first7=Sonja C.|last8=Damm|first8=Frederik|last9=Krauter|first9=Jürgen|date=2011|title=Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity|url=https://www.ncbi.nlm.nih.gov/pubmed/21177436|journal=Blood|volume=117|issue=8|pages=2469–2475|doi=10.1182/blood-2010-09-307280|issn=1528-0020|pmid=21177436}}</ref>. Conversely, mutations in ''GATA2'' appear to occur more often in ''CEBPA'' single- and double-mutants<ref>{{Cite journal|last=Green|first=Claire L.|last2=Tawana|first2=Kiran|last3=Hills|first3=Robert K.|last4=Bödör|first4=Csaba|last5=Fitzgibbon|first5=Jude|last6=Inglott|first6=Sarah|last7=Ancliff|first7=Phil|last8=Burnett|first8=Alan K.|last9=Linch|first9=David C.|date=2013|title=GATA2 mutations in sporadic and familial acute myeloid leukaemia patients with CEBPA mutations|url=https://www.ncbi.nlm.nih.gov/pubmed/23560626|journal=British Journal of Haematology|volume=161|issue=5|pages=701–705|doi=10.1111/bjh.12317|issn=1365-2141|pmid=23560626}}</ref>. The prognostic significance of these concomitant mutations is, however, unclear. Biallelic ''CEBPA'' mutations appear to confer a positive prognostic effect regardless of concomitant mutations. | |||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
| Line 354: | Line 218: | ||
|Mutually Exclusive||None | |Mutually Exclusive||None | ||
|} | |} | ||
==Epigenomic Alterations== | ==Epigenomic Alterations== | ||
Mutation types include mutations in the encoding gene and promoter hypermethylation<ref>{{Cite journal|last=Hollink|first=Iris H. I. M.|last2=van den Heuvel-Eibrink|first2=Marry M.|last3=Arentsen-Peters|first3=Susan T. C. J. M.|last4=Zimmermann|first4=Martin|last5=Peeters|first5=Justine K.|last6=Valk|first6=Peter J. M.|last7=Balgobind|first7=Brian V.|last8=Sonneveld|first8=Edwin|last9=Kaspers|first9=Gertjan J. L.|date=2011-03|title=Characterization of CEBPA mutations and promoter hypermethylation in pediatric acute myeloid leukemia|url=https://pubmed.ncbi.nlm.nih.gov/21134981|journal=Haematologica|volume=96|issue=3|pages=384–392|doi=10.3324/haematol.2010.031336|issn=1592-8721|pmc=3046269|pmid=21134981}}</ref>. | |||
==Genes and Main Pathways Involved== | ==Genes and Main Pathways Involved== | ||
''CEBPA'', located on chromosome 19 band q13.1, encodes a transcription factor of the basic region leucine zipper (bZIP) family. It is involved in the coordination of myeloid differentiation and cellular growth arrest. Alternative translation initiation sites result in protein isoforms of different lengths. | |||
''CEPBA'' works in a tissue-specific manner to direct cellular differentiation by activating lineage-specific gene promoters. Interactions with the basal transcriptional apparatus (TBP/TFIIB), histone acetylators (CBP/p300), and chromatin-remodelling complexes (SWI/SNF) have all been implicated in lineage-specific gene activation by ''CEBPA''. In the haematopoietic system there appears to be interplay between ''CEBPA'' and ''GATA'' factors<ref>{{Cite journal|last=McNagny|first=K. M.|last2=Sieweke|first2=M. H.|last3=Döderlein|first3=G.|last4=Graf|first4=T.|last5=Nerlov|first5=C.|date=1998|title=Regulation of eosinophil-specific gene expression by a C/EBP-Ets complex and GATA-1|url=https://www.ncbi.nlm.nih.gov/pubmed/9649437|journal=The EMBO journal|volume=17|issue=13|pages=3669–3680|doi=10.1093/emboj/17.13.3669|issn=0261-4189|pmc=1170703|pmid=9649437}}</ref>. ''CEBPA'' knockout mice show a complete lack of granulocytes while blasts accumulate in the bone marrow, suggesting an early block of myeloid maturation<ref>{{Cite journal|last=Zhang|first=D. E.|last2=Zhang|first2=P.|last3=Wang|first3=N. D.|last4=Hetherington|first4=C. J.|last5=Darlington|first5=G. J.|last6=Tenen|first6=D. G.|date=1997|title=Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice|url=https://www.ncbi.nlm.nih.gov/pubmed/9012825|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=94|issue=2|pages=569–574|doi=10.1073/pnas.94.2.569|issn=0027-8424|pmc=PMC19554|pmid=9012825}}</ref>. In the context of haematopoietic differentiation, evidence suggests ''CEBPA'' plays a role in regulating the expression of genes encoding growth factor receptors (e.g. granulocyte colony-stimulating factor) and secondary granule proteins (e.g. lactoferrin)<ref>{{Cite journal|last=Radomska|first=H. S.|last2=Huettner|first2=C. S.|last3=Zhang|first3=P.|last4=Cheng|first4=T.|last5=Scadden|first5=D. T.|last6=Tenen|first6=D. G.|date=1998|title=CCAAT/enhancer binding protein alpha is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors|url=https://www.ncbi.nlm.nih.gov/pubmed/9632814|journal=Molecular and Cellular Biology|volume=18|issue=7|pages=4301–4314|doi=10.1128/mcb.18.7.4301|issn=0270-7306|pmc=PMC109014|pmid=9632814}}</ref><ref>{{Cite journal|last=Zhang|first=P.|last2=Iwama|first2=A.|last3=Datta|first3=M. W.|last4=Darlington|first4=G. J.|last5=Link|first5=D. C.|last6=Tenen|first6=D. G.|date=1998|title=Upregulation of interleukin 6 and granulocyte colony-stimulating factor receptors by transcription factor CCAAT enhancer binding protein alpha (C/EBP alpha) is critical for granulopoiesis|url=https://www.ncbi.nlm.nih.gov/pubmed/9743535|journal=The Journal of Experimental Medicine|volume=188|issue=6|pages=1173–1184|doi=10.1084/jem.188.6.1173|issn=0022-1007|pmc=2212540|pmid=9743535}}</ref>. It has also been implicated, along with ''NFI-A'', in mediating miR-223 expression<ref>{{Cite journal|last=Fazi|first=Francesco|last2=Rosa|first2=Alessandro|last3=Fatica|first3=Alessandro|last4=Gelmetti|first4=Vania|last5=De Marchis|first5=Maria Laura|last6=Nervi|first6=Clara|last7=Bozzoni|first7=Irene|date=2005|title=A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis|url=https://www.ncbi.nlm.nih.gov/pubmed/16325577|journal=Cell|volume=123|issue=5|pages=819–831|doi=10.1016/j.cell.2005.09.023|issn=0092-8674|pmid=16325577}}</ref>. Studies indicate that ''CEBPA'' is not required for differentiation of granulocytes beyond the granulocyte-monocyte progenitor (GMP) stage, and that ''CEBPA'' controls stem-cell renewal with expression of ''Bmi-1'' elevated in '''CEBPA'' knockouts<ref>{{Cite journal|last=Zhang|first=Pu|last2=Iwasaki-Arai|first2=Junko|last3=Iwasaki|first3=Hiromi|last4=Fenyus|first4=Maris L.|last5=Dayaram|first5=Tajhal|last6=Owens|first6=Bronwyn M.|last7=Shigematsu|first7=Hirokazu|last8=Levantini|first8=Elena|last9=Huettner|first9=Claudia S.|date=2004|title=Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha|url=https://www.ncbi.nlm.nih.gov/pubmed/15589173|journal=Immunity|volume=21|issue=6|pages=853–863|doi=10.1016/j.immuni.2004.11.006|issn=1074-7613|pmid=15589173}}</ref>. | |||
Proliferation arrest also appears to be an important aspect of ''CEBPA'' function via interaction with CDK2/CDK4, upregulation of the p21 (WAF-1/CIP-1/SDI-1) protein and the SWI/SNF complex, and inhibition of the E2F complex<ref>{{Cite journal|last=Pedersen|first=T. A.|last2=Kowenz-Leutz|first2=E.|last3=Leutz|first3=A.|last4=Nerlov|first4=C.|date=2001|title=Cooperation between C/EBPalpha TBP/TFIIB and SWI/SNF recruiting domains is required for adipocyte differentiation|url=https://www.ncbi.nlm.nih.gov/pubmed/11731483|journal=Genes & Development|volume=15|issue=23|pages=3208–3216|doi=10.1101/gad.209901|issn=0890-9369|pmc=PMC312836|pmid=11731483}}</ref><ref>{{Cite journal|last=Slomiany|first=B. A.|last2=D'Arigo|first2=K. L.|last3=Kelly|first3=M. M.|last4=Kurtz|first4=D. T.|date=2000|title=C/EBPalpha inhibits cell growth via direct repression of E2F-DP-mediated transcription|url=https://www.ncbi.nlm.nih.gov/pubmed/10913181|journal=Molecular and Cellular Biology|volume=20|issue=16|pages=5986–5997|doi=10.1128/mcb.20.16.5986-5997.2000|issn=0270-7306|pmc=PMC86075|pmid=10913181}}</ref><ref>{{Cite journal|last=Timchenko|first=N. A.|last2=Wilde|first2=M.|last3=Nakanishi|first3=M.|last4=Smith|first4=J. R.|last5=Darlington|first5=G. J.|date=1996|title=CCAAT/enhancer-binding protein alpha (C/EBP alpha) inhibits cell proliferation through the p21 (WAF-1/CIP-1/SDI-1) protein|url=https://www.ncbi.nlm.nih.gov/pubmed/8846917|journal=Genes & Development|volume=10|issue=7|pages=804–815|doi=10.1101/gad.10.7.804|issn=0890-9369|pmid=8846917}}</ref><ref>{{Cite journal|last=Wang|first=H.|last2=Iakova|first2=P.|last3=Wilde|first3=M.|last4=Welm|first4=A.|last5=Goode|first5=T.|last6=Roesler|first6=W. J.|last7=Timchenko|first7=N. A.|date=2001|title=C/EBPalpha arrests cell proliferation through direct inhibition of Cdk2 and Cdk4|url=https://www.ncbi.nlm.nih.gov/pubmed/11684017|journal=Molecular Cell|volume=8|issue=4|pages=817–828|doi=10.1016/s1097-2765(01)00366-5|issn=1097-2765|pmid=11684017}}</ref><ref>{{Cite journal|last=Wang|first=Qian-Fei|last2=Cleaves|first2=Rebecca|last3=Kummalue|first3=Tanawan|last4=Nerlov|first4=Claus|last5=Friedman|first5=Alan D.|date=2003|title=Cell cycle inhibition mediated by the outer surface of the C/EBPalpha basic region is required but not sufficient for granulopoiesis|url=https://www.ncbi.nlm.nih.gov/pubmed/12730669|journal=Oncogene|volume=22|issue=17|pages=2548–2557|doi=10.1038/sj.onc.1206360|issn=0950-9232|pmid=12730669}}</ref>. This E2F inhibition leads to ''c-myc'' downregulation, which is required for granulocytic regulation<ref>{{Cite journal|last=Johansen|first=L. M.|last2=Iwama|first2=A.|last3=Lodie|first3=T. A.|last4=Sasaki|first4=K.|last5=Felsher|first5=D. W.|last6=Golub|first6=T. R.|last7=Tenen|first7=D. G.|date=2001|title=c-Myc is a critical target for c/EBPalpha in granulopoiesis|url=https://www.ncbi.nlm.nih.gov/pubmed/11340171|journal=Molecular and Cellular Biology|volume=21|issue=11|pages=3789–3806|doi=10.1128/MCB.21.11.3789-3806.2001|issn=0270-7306|pmc=PMC87031|pmid=11340171}}</ref>. Mutations in the C-terminal region of ''CEBPA'' abrogate CEBPA-E2F complex function<ref>{{Cite journal|last=Porse|first=B. T.|last2=Pedersen TA|first2=null|last3=Xu|first3=X.|last4=Lindberg|first4=B.|last5=Wewer|first5=U. M.|last6=Friis-Hansen|first6=L.|last7=Nerlov|first7=C.|date=2001|title=E2F repression by C/EBPalpha is required for adipogenesis and granulopoiesis in vivo|url=https://www.ncbi.nlm.nih.gov/pubmed/11672531|journal=Cell|volume=107|issue=2|pages=247–258|doi=10.1016/s0092-8674(01)00516-5|issn=0092-8674|pmid=11672531}}</ref>. | |||
The precise mechanism by which ''CEBPA'' mutants inhibit granulocytic differentiation in the context of AML is still unclear. | |||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
| Line 387: | Line 250: | ||
| | | | ||
|} | |} | ||
==Genetic Diagnostic Testing Methods== | ==Genetic Diagnostic Testing Methods== | ||
| Line 407: | Line 256: | ||
==Familial Forms== | ==Familial Forms== | ||
Familial mutations of ''CEBPA'' have been described in several families<ref name=":3">{{Cite journal|last=Smith|first=Matthew L.|last2=Cavenagh|first2=Jamie D.|last3=Lister|first3=T. Andrew|last4=Fitzgibbon|first4=Jude|date=2004|title=Mutation of CEBPA in familial acute myeloid leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/15575056|journal=The New England Journal of Medicine|volume=351|issue=23|pages=2403–2407|doi=10.1056/NEJMoa041331|issn=1533-4406|pmid=15575056}}</ref><ref>{{Cite journal|last=Nanri|first=Tomoko|last2=Uike|first2=Naokuni|last3=Kawakita|first3=Toshiro|last4=Iwanaga|first4=Eisaku|last5=Mitsuya|first5=Hiroaki|last6=Asou|first6=Norio|date=2010|title=A family harboring a germ-line N-terminal C/EBPalpha mutation and development of acute myeloid leukemia with an additional somatic C-terminal C/EBPalpha mutation|url=https://www.ncbi.nlm.nih.gov/pubmed/19953636|journal=Genes, Chromosomes & Cancer|volume=49|issue=3|pages=237–241|doi=10.1002/gcc.20734|issn=1098-2264|pmid=19953636}}</ref><ref>{{Cite journal|last=Sellick|first=G. S.|last2=Spendlove|first2=H. E.|last3=Catovsky|first3=D.|last4=Pritchard-Jones|first4=K.|last5=Houlston|first5=R. S.|date=2005|title=Further evidence that germline CEBPA mutations cause dominant inheritance of acute myeloid leukaemia|url=https://www.ncbi.nlm.nih.gov/pubmed/15902292|journal=Leukemia|volume=19|issue=7|pages=1276–1278|doi=10.1038/sj.leu.2403788|issn=0887-6924|pmid=15902292}}</ref>. Typically, these are N-terminal mutations that are later joined by a somatic C-terminal mutation on the opposite allele leading to AML. | Familial mutations of ''CEBPA'' have been described in several families<ref name=":3">{{Cite journal|last=Smith|first=Matthew L.|last2=Cavenagh|first2=Jamie D.|last3=Lister|first3=T. Andrew|last4=Fitzgibbon|first4=Jude|date=2004|title=Mutation of CEBPA in familial acute myeloid leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/15575056|journal=The New England Journal of Medicine|volume=351|issue=23|pages=2403–2407|doi=10.1056/NEJMoa041331|issn=1533-4406|pmid=15575056}}</ref><ref>{{Cite journal|last=Nanri|first=Tomoko|last2=Uike|first2=Naokuni|last3=Kawakita|first3=Toshiro|last4=Iwanaga|first4=Eisaku|last5=Mitsuya|first5=Hiroaki|last6=Asou|first6=Norio|date=2010|title=A family harboring a germ-line N-terminal C/EBPalpha mutation and development of acute myeloid leukemia with an additional somatic C-terminal C/EBPalpha mutation|url=https://www.ncbi.nlm.nih.gov/pubmed/19953636|journal=Genes, Chromosomes & Cancer|volume=49|issue=3|pages=237–241|doi=10.1002/gcc.20734|issn=1098-2264|pmid=19953636}}</ref><ref>{{Cite journal|last=Sellick|first=G. S.|last2=Spendlove|first2=H. E.|last3=Catovsky|first3=D.|last4=Pritchard-Jones|first4=K.|last5=Houlston|first5=R. S.|date=2005|title=Further evidence that germline CEBPA mutations cause dominant inheritance of acute myeloid leukaemia|url=https://www.ncbi.nlm.nih.gov/pubmed/15902292|journal=Leukemia|volume=19|issue=7|pages=1276–1278|doi=10.1038/sj.leu.2403788|issn=0887-6924|pmid=15902292}}</ref>. Approximately 5-10% of bi''CEBPA'' AML cases have a germline N-terminal<ref>{{Cite journal|last=Taskesen|first=Erdogan|last2=Bullinger|first2=Lars|last3=Corbacioglu|first3=Andrea|last4=Sanders|first4=Mathijs A.|last5=Erpelinck|first5=Claudia A. J.|last6=Wouters|first6=Bas J.|last7=van der Poel-van de Luytgaarde|first7=Sonja C.|last8=Damm|first8=Frederik|last9=Krauter|first9=Jürgen|date=2011-02-24|title=Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity|url=https://pubmed.ncbi.nlm.nih.gov/21177436|journal=Blood|volume=117|issue=8|pages=2469–2475|doi=10.1182/blood-2010-09-307280|issn=1528-0020|pmid=21177436}}</ref>. Typically, these are N-terminal mutations that are later joined by a somatic C-terminal mutation on the opposite allele leading to AML. In the familia from, AML has very high penetrance and presents relatively early (median aga: 245.5 years)<ref name=":8" />. There are some notable familial AML-Associated ''CEBPA'' germline pathogenic variants: c.68delC, p.Pro23ArgfsTer137<ref>{{Cite journal|last=Smith|first=Matthew L.|last2=Cavenagh|first2=Jamie D.|last3=Lister|first3=T. Andrew|last4=Fitzgibbon|first4=Jude|date=2004-12-02|title=Mutation of CEBPA in familial acute myeloid leukemia|url=https://pubmed.ncbi.nlm.nih.gov/15575056|journal=The New England Journal of Medicine|volume=351|issue=23|pages=2403–2407|doi=10.1056/NEJMoa041331|issn=1533-4406|pmid=15575056}}</ref>; c.68dupC, p.His24AlafsTer84<ref>{{Cite journal|last=Sellick|first=G. S.|last2=Spendlove|first2=H. E.|last3=Catovsky|first3=D.|last4=Pritchard-Jones|first4=K.|last5=Houlston|first5=R. S.|date=2005-07|title=Further evidence that germline CEBPA mutations cause dominant inheritance of acute myeloid leukaemia|url=https://pubmed.ncbi.nlm.nih.gov/15902292|journal=Leukemia|volume=19|issue=7|pages=1276–1278|doi=10.1038/sj.leu.2403788|issn=0887-6924|pmid=15902292}}</ref><ref>{{Cite journal|last=Renneville|first=A.|last2=Mialou|first2=V.|last3=Philippe|first3=N.|last4=Kagialis-Girard|first4=S.|last5=Biggio|first5=V.|last6=Zabot|first6=M.-T.|last7=Thomas|first7=X.|last8=Bertrand|first8=Y.|last9=Preudhomme|first9=C.|date=2009-04|title=Another pedigree with familial acute myeloid leukemia and germline CEBPA mutation|url=https://pubmed.ncbi.nlm.nih.gov/18946494|journal=Leukemia|volume=23|issue=4|pages=804–806|doi=10.1038/leu.2008.294|issn=1476-5551|pmid=18946494}}</ref><ref name=":8" />; c.141delC, p.Ala48ProfsTer112<ref name=":1">{{Cite journal|last=Pabst|first=Thomas|last2=Eyholzer|first2=Marianne|last3=Haefliger|first3=Simon|last4=Schardt|first4=Julian|last5=Mueller|first5=Beatrice U.|date=2008-11-01|title=Somatic CEBPA mutations are a frequent second event in families with germline CEBPA mutations and familial acute myeloid leukemia|url=https://pubmed.ncbi.nlm.nih.gov/18768433|journal=Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology|volume=26|issue=31|pages=5088–5093|doi=10.1200/JCO.2008.16.5563|issn=1527-7755|pmid=18768433}}</ref>; c.147_165del19, p.Glu50AlafsTer104<ref>{{Cite journal|last=Debeljak|first=Maruša|last2=Kitanovski|first2=Lidija|last3=Pajič|first3=Tadej|last4=Jazbec|first4=Janez|date=2013-07|title=Concordant acute myeloblastic leukemia in monozygotic twins with germline and shared somatic mutations in the gene for CCAAT-enhancer-binding protein α with 13 years difference at onset|url=https://pubmed.ncbi.nlm.nih.gov/23716546|journal=Haematologica|volume=98|issue=7|pages=e73–74|doi=10.3324/haematol.2012.082578|issn=1592-8721|pmc=3696596|pmid=23716546}}</ref>; c.158delG, p.Gly53AlafsTer107<ref name=":4">{{Cite journal|last=Taskesen|first=Erdogan|last2=Bullinger|first2=Lars|last3=Corbacioglu|first3=Andrea|last4=Sanders|first4=Mathijs A.|last5=Erpelinck|first5=Claudia A. J.|last6=Wouters|first6=Bas J.|last7=van der Poel-van de Luytgaarde|first7=Sonja C.|last8=Damm|first8=Frederik|last9=Krauter|first9=Jürgen|date=2011-02-24|title=Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity|url=https://pubmed.ncbi.nlm.nih.gov/21177436|journal=Blood|volume=117|issue=8|pages=2469–2475|doi=10.1182/blood-2010-09-307280|issn=1528-0020|pmid=21177436}}</ref>; c.189delC, p.Asp63GlufsTer97<ref name=":4" />; c.314_315insT, p.Phe106LeufsTer2<ref name=":1" />; c.932A>C, p.Gln311Pro<ref>{{Cite journal|last=Pathak|first=Anand|last2=Seipel|first2=Katja|last3=Pemov|first3=Alexander|last4=Dewan|first4=Ramita|last5=Brown|first5=Christina|last6=Ravichandran|first6=Sarangan|last7=Luke|first7=Brian T.|last8=Malasky|first8=Michael|last9=Suman|first9=Shalabh|date=2016-07|title=Whole exome sequencing reveals a C-terminal germline variant in CEBPA-associated acute myeloid leukemia: 45-year follow up of a large family|url=https://pubmed.ncbi.nlm.nih.gov/26721895|journal=Haematologica|volume=101|issue=7|pages=846–852|doi=10.3324/haematol.2015.130799|issn=1592-8721|pmc=5004464|pmid=26721895}}</ref>; c.442G>T, p.Glu148Ter<ref>{{Cite journal|last=Mendoza|first=Hadrian|last2=Chen|first2=Po-Han|last3=Pine|first3=Alexander B.|last4=Siddon|first4=Alexa J.|last5=Bale|first5=Allen E.|last6=Gowda|first6=Lohith|last7=Killie|first7=Amy|last8=Richards|first8=Jonica|last9=Varin-Tremblay|first9=Camille|date=2021-05|title=A case of acute myeloid leukemia with unusual germline CEBPA mutation: lessons learned about mutation detection, location, and penetrance|url=https://pubmed.ncbi.nlm.nih.gov/33345654|journal=Leukemia & Lymphoma|volume=62|issue=5|pages=1251–1254|doi=10.1080/10428194.2020.1861276|issn=1029-2403|pmid=33345654}}</ref>. | ||
==Additional Information== | ==Additional Information== | ||
''CEBPA'' stands for CCAAT enhancer-binding protein alpha. | |||
==Links== | ==Links== | ||
Latest revision as of 12:07, 3 July 2025
Haematolymphoid Tumours (WHO Classification, 5th ed.)
| This page is under construction |
editContent Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition ClassificationThis page was converted to the new template on 2023-12-07. The original page can be found at HAEM4:Acute Myeloid Leukemia (AML) with Biallelic Mutations of CEBPA.
(General Instructions – The focus of these pages is the clinically significant genetic alterations in each disease type. This is based on up-to-date knowledge from multiple resources such as PubMed and the WHO classification books. The CCGA is meant to be a supplemental resource to the WHO classification books; the CCGA captures in a continually updated wiki-stye manner the current genetics/genomics knowledge of each disease, which evolves more rapidly than books can be revised and published. If the same disease is described in multiple WHO classification books, the genetics-related information for that disease will be consolidated into a single main page that has this template (other pages would only contain a link to this main page). Use HUGO-approved gene names and symbols (italicized when appropriate), HGVS-based nomenclature for variants, as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column in a table, click nearby within the table and select the > symbol that appears. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see Author_Instructions and FAQs as well as contact your Associate Editor or Technical Support.)
Primary Author(s)*
Xinxiu Xu, Vanderbilt University Medical Center
WHO Classification of Disease
| Structure | Disease |
|---|---|
| Book | Haematolymphoid Tumours (5th ed.) |
| Category | Myeloid proliferations and neoplasms |
| Family | Acute myeloid leukaemia |
| Type | Acute myeloid leukaemia with defining genetic abnormalities |
| Subtype(s) | Acute myeloid leukaemia with CEBPA mutation |
Related Terminology
| Acceptable | Acute myeloid leukaemia with biallelic mutation of CEBPA |
| Not Recommended | N/A |
Gene Rearrangements
None.
| Driver Gene | Fusion(s) and Common Partner Genes | Molecular Pathogenesis | Typical Chromosomal Alteration(s) | Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease) | Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | Established Clinical Significance Per Guidelines - Yes or No (Source) | Clinical Relevance Details/Other Notes |
|---|---|---|---|---|---|---|---|
| EXAMPLE: ABL1 | EXAMPLE: BCR::ABL1 | EXAMPLE: The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1. | EXAMPLE: t(9;22)(q34;q11.2) | EXAMPLE: Common (CML) | EXAMPLE: D, P, T | EXAMPLE: Yes (WHO, NCCN) | EXAMPLE:
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference). |
| EXAMPLE: CIC | EXAMPLE: CIC::DUX4 | EXAMPLE: Typically, the last exon of CIC is fused to DUX4. The fusion breakpoint in CIC is usually intra-exonic and removes an inhibitory sequence, upregulating PEA3 genes downstream of CIC including ETV1, ETV4, and ETV5. | EXAMPLE: t(4;19)(q25;q13) | EXAMPLE: Common (CIC-rearranged sarcoma) | EXAMPLE: D | EXAMPLE:
DUX4 has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references). | |
Individual Region Genomic Gain/Loss/LOH
Subset of cases have abnormal karyotype, del(9q) is common but does not make a diagnosis of AML with myelodysplasia related changes[1][2].
| Chr # | Gain, Loss, Amp, LOH | Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size] | Relevant Gene(s) | Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | Established Clinical Significance Per Guidelines - Yes or No (Source) | Clinical Relevance Details/Other Notes |
|---|---|---|---|---|---|---|
| 9 | Loss | 9q | Unknown | P | No | A collaborative intergroup study has been initiated to define whether the relatively good prognosis associated with del(9q) is related to the presence of a CEBPA mutation[1]. |
Characteristic Chromosomal or Other Global Mutational Patterns
None.
| Chromosomal Pattern | Molecular Pathogenesis | Prevalence -
Common >20%, Recurrent 5-20% or Rare <5% (Disease) |
Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | Established Clinical Significance Per Guidelines - Yes or No (Source) | Clinical Relevance Details/Other Notes |
|---|---|---|---|---|---|
| EXAMPLE: Co-deletion of 1p and 18q | EXAMPLE: See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). | EXAMPLE: Common (Oligodendroglioma) | EXAMPLE: D, P | ||
| EXAMPLE:
Microsatellite instability - hypermutated |
EXAMPLE: Common (Endometrial carcinoma) | EXAMPLE: P, T | |||
Gene Mutations (SNV/INDEL)
Patients with biallelic CEBPA mutations and a normal karyotype have a more favorable prognosis than those with monoallelic or no CEBPA mutations, with higher complete remission rates and longer disease-free survival, relapse-free survival, event-free survival, and overall survival[3]. Patients with abnormal karyotypes (but not complex karyotypes) and biallelic CEBPA mutations also have longer disease-free survival, event-free survival, and overall survival when compared to patients with monoallelic or no CEBPA mutations[3]. Detection of biCEBPA should raise possibility of germline mutation. Germline testing may be considered in patients with persistent CEBPA mutations following morphologic remission or in patients with family history of leukemia[4].
Pathogenic mutations in CEBPA are predominantly insertion/deletion frameshift mutations in the N-terminal TAD region and in-frame C-terminal bZIP mutations. Patients with biCEBPA and smbZIP-CEBPA are younger and have higher white blood cell counts than those with a single mutation in the N-terminal TAD region[5]. No particular mutational hotspots exist but the following table records the most reported mutations in the COSMIC database (frequency based on a count out of 1523 mutations):
| Gene | Genetic Alteration | Tumor Suppressor Gene, Oncogene, Other | Prevalence -
Common >20%, Recurrent 5-20% or Rare <5% (Disease) |
Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | Established Clinical Significance Per Guidelines - Yes or No (Source) | Clinical Relevance Details/Other Notes |
|---|---|---|---|---|---|---|
| CEBPA
|
c.939_940insAAG, p.K313_V314insK | Oncogene | Recurrent (AML) | D, P, T | Yes (NCCN) | AML with CEBPA mutation constitutes ~5% pf pediatric AML and 5-11% adult AML[6][7][5]. Accounts for 4 - 9% of AML diagnoses in children and young adults. Less common in older patients.
|
| CEBPA
|
c.68_69insC, p.H24fs*84 | Oncogene | Recurrent (AML) | D, P, T | Yes (NCCN) | |
| CEBPA | c.247delC, p.Q83fs*77 | Oncogene | Recurrent (AML) | D, P, T | Yes (NCCN) | |
| CEBPA | c.936_937insCAG, p.Q312_K313insQ | Oncogene | Recurrent (AML) | D, P, T | Yes (NCCN) | |
| CEBPA | c.912_913insTTG, p.K304_Q305insL | Oncogene | Recurrent (AML) | D, P, T | Yes (NCCN) |
Note: A more extensive list of mutations can be found in cBioportal, COSMIC, and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
Most of (>70%) cases associated with normal karyotype; del(9q) may also be seen[1][2]. Concurrent mutations in NPM1 and FLT3 are seen less frequently (5-9%) in individuals with biallelic CEBPA mutations than in those with no or monoallelic mutations[15]. Conversely, mutations in GATA2 appear to occur more often (39%) in CEBPA single- and double-mutants[16]. The prognostic significance of these concomitant mutations is, however, unclear. Biallelic CEBPA mutations appear to confer a positive prognostic effect regardless of concomitant mutations.
| Type | Gene/Region/Other |
|---|---|
| Concomitant Mutations | NPM1, FLT3, GATA2 |
| Secondary Mutations | None |
| Mutually Exclusive | None |
Epigenomic Alterations
Mutation types include mutations in the encoding gene and promoter hypermethylation[17].
Genes and Main Pathways Involved
CEBPA, located on chromosome 19 band q13.1, encodes a transcription factor of the basic region leucine zipper (bZIP) family. It is involved in the coordination of myeloid differentiation and cellular growth arrest. Alternative translation initiation sites result in protein isoforms of different lengths.
CEPBA works in a tissue-specific manner to direct cellular differentiation by activating lineage-specific gene promoters. Interactions with the basal transcriptional apparatus (TBP/TFIIB), histone acetylators (CBP/p300), and chromatin-remodelling complexes (SWI/SNF) have all been implicated in lineage-specific gene activation by CEBPA. In the haematopoietic system there appears to be interplay between CEBPA and GATA factors[18]. CEBPA knockout mice show a complete lack of granulocytes while blasts accumulate in the bone marrow, suggesting an early block of myeloid maturation[19]. In the context of haematopoietic differentiation, evidence suggests CEBPA plays a role in regulating the expression of genes encoding growth factor receptors (e.g. granulocyte colony-stimulating factor) and secondary granule proteins (e.g. lactoferrin)[20][21]. It has also been implicated, along with NFI-A, in mediating miR-223 expression[22]. Studies indicate that CEBPA is not required for differentiation of granulocytes beyond the granulocyte-monocyte progenitor (GMP) stage, and that CEBPA controls stem-cell renewal with expression of Bmi-1 elevated in 'CEBPA knockouts[23]. Proliferation arrest also appears to be an important aspect of CEBPA function via interaction with CDK2/CDK4, upregulation of the p21 (WAF-1/CIP-1/SDI-1) protein and the SWI/SNF complex, and inhibition of the E2F complex[24][25][26][27][28]. This E2F inhibition leads to c-myc downregulation, which is required for granulocytic regulation[29]. Mutations in the C-terminal region of CEBPA abrogate CEBPA-E2F complex function[30]. The precise mechanism by which CEBPA mutants inhibit granulocytic differentiation in the context of AML is still unclear.
| Gene; Genetic Alteration | Pathway | Pathophysiologic Outcome |
|---|---|---|
| EXAMPLE: BRAF and MAP2K1; Activating mutations | EXAMPLE: MAPK signaling | EXAMPLE: Increased cell growth and proliferation |
| EXAMPLE: CDKN2A; Inactivating mutations | EXAMPLE: Cell cycle regulation | EXAMPLE: Unregulated cell division |
| EXAMPLE: KMT2C and ARID1A; Inactivating mutations | EXAMPLE: Histone modification, chromatin remodeling | EXAMPLE: Abnormal gene expression program |
Genetic Diagnostic Testing Methods
Sanger sequencing, Next Generation Sequencing
Familial Forms
Familial mutations of CEBPA have been described in several families[31][32][33]. Approximately 5-10% of biCEBPA AML cases have a germline N-terminal[34]. Typically, these are N-terminal mutations that are later joined by a somatic C-terminal mutation on the opposite allele leading to AML. In the familia from, AML has very high penetrance and presents relatively early (median aga: 245.5 years)[4]. There are some notable familial AML-Associated CEBPA germline pathogenic variants: c.68delC, p.Pro23ArgfsTer137[35]; c.68dupC, p.His24AlafsTer84[36][37][4]; c.141delC, p.Ala48ProfsTer112[38]; c.147_165del19, p.Glu50AlafsTer104[39]; c.158delG, p.Gly53AlafsTer107[40]; c.189delC, p.Asp63GlufsTer97[40]; c.314_315insT, p.Phe106LeufsTer2[38]; c.932A>C, p.Gln311Pro[41]; c.442G>T, p.Glu148Ter[42].
Additional Information
CEBPA stands for CCAAT enhancer-binding protein alpha.
Links
References
(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted.)
- ↑ 1.0 1.1 1.2 Frohling, Stefan; et al. (2004-11-16). "Acute Myeloid Leukemia with Deletion 9q Is Associated with CEBPA Loss-of-Function Mutations". Blood. 104 (11): 2896. doi:10.1182/blood.V104.11.2896.2896. ISSN 0006-4971.
- ↑ 2.0 2.1 Fröhling, Stefan; et al. (2005). "Acute myeloid leukemia with deletion 9q within a noncomplex karyotype is associated with CEBPA loss-of-function mutations". Genes, Chromosomes and Cancer. 42 (4): 427–432. doi:10.1002/gcc.20152. ISSN 1098-2264.
- ↑ 3.0 3.1 Arber DA, et al., (2017). Acute myeloid leukaemia with recurrent genetic abnormalities, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. Revised 4th Edition. IARC Press: Lyon, France, p142-144.
- ↑ 4.0 4.1 4.2 Tawana, Kiran; et al. (2015-09-03). "Disease evolution and outcomes in familial AML with germline CEBPA mutations". Blood. 126 (10): 1214–1223. doi:10.1182/blood-2015-05-647172. ISSN 1528-0020. PMID 26162409.
- ↑ 5.0 5.1 5.2 Taube, Franziska; et al. (2022-01-06). "CEBPA mutations in 4708 patients with acute myeloid leukemia: differential impact of bZIP and TAD mutations on outcome". Blood. 139 (1): 87–103. doi:10.1182/blood.2020009680. ISSN 1528-0020. PMID 34320176 Check
|pmid=value (help). - ↑ 6.0 6.1 Tarlock, Katherine; et al. (2021-09-30). "CEBPA-bZip mutations are associated with favorable prognosis in de novo AML: a report from the Children's Oncology Group". Blood. 138 (13): 1137–1147. doi:10.1182/blood.2020009652. ISSN 1528-0020. PMC 8570058 Check
|pmc=value (help). PMID 33951732 Check|pmid=value (help). - ↑ 7.0 7.1 Wakita, Satoshi; et al. (2022-01-11). "Prognostic impact of CEBPA bZIP domain mutation in acute myeloid leukemia". Blood Advances. 6 (1): 238–247. doi:10.1182/bloodadvances.2021004292. ISSN 2473-9537. PMC 8753195 Check
|pmc=value (help). PMID 34448807 Check|pmid=value (help). - ↑ Pollyea DA, Altman JK, (2025). NCCN Clinical Practice Guidelines in Oncology: AML. Version 2. Available at: NCCN.org.
- ↑ 9.0 9.1 Tumours, 5th edition, IARC Press:Lyon, 2024. Online at: WHO Classification of Tumours.
- ↑ Wouters, Bas J.; et al. (2009-03-26). "Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome". Blood. 113 (13): 3088–3091. doi:10.1182/blood-2008-09-179895. ISSN 1528-0020. PMC 2662648. PMID 19171880.
- ↑ Dufour, Annika; et al. (2010-02-01). "Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome". Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 28 (4): 570–577. doi:10.1200/JCO.2008.21.6010. ISSN 1527-7755. PMID 20038735.
- ↑ Green, Claire L.; et al. (2010-06-01). "Prognostic significance of CEBPA mutations in a large cohort of younger adult patients with acute myeloid leukemia: impact of double CEBPA mutations and the interaction with FLT3 and NPM1 mutations". Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 28 (16): 2739–2747. doi:10.1200/JCO.2009.26.2501. ISSN 1527-7755. PMID 20439648.
- ↑ Schlenk, Richard F.; et al. (2013-08-29). "The value of allogeneic and autologous hematopoietic stem cell transplantation in prognostically favorable acute myeloid leukemia with double mutant CEBPA". Blood. 122 (9): 1576–1582. doi:10.1182/blood-2013-05-503847. ISSN 0006-4971.
- ↑ Su, Long; et al. (2022). "Acute Myeloid Leukemia With CEBPA Mutations: Current Progress and Future Directions". Frontiers in Oncology. 12: 806137. doi:10.3389/fonc.2022.806137. ISSN 2234-943X. PMC 8844020 Check
|pmc=value (help). PMID 35178345 Check|pmid=value (help). - ↑ Taskesen, Erdogan; et al. (2011). "Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity". Blood. 117 (8): 2469–2475. doi:10.1182/blood-2010-09-307280. ISSN 1528-0020. PMID 21177436.
- ↑ Green, Claire L.; et al. (2013). "GATA2 mutations in sporadic and familial acute myeloid leukaemia patients with CEBPA mutations". British Journal of Haematology. 161 (5): 701–705. doi:10.1111/bjh.12317. ISSN 1365-2141. PMID 23560626.
- ↑ Hollink, Iris H. I. M.; et al. (2011-03). "Characterization of CEBPA mutations and promoter hypermethylation in pediatric acute myeloid leukemia". Haematologica. 96 (3): 384–392. doi:10.3324/haematol.2010.031336. ISSN 1592-8721. PMC 3046269. PMID 21134981. Check date values in:
|date=(help) - ↑ McNagny, K. M.; et al. (1998). "Regulation of eosinophil-specific gene expression by a C/EBP-Ets complex and GATA-1". The EMBO journal. 17 (13): 3669–3680. doi:10.1093/emboj/17.13.3669. ISSN 0261-4189. PMC 1170703. PMID 9649437.
- ↑ Zhang, D. E.; et al. (1997). "Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice". Proceedings of the National Academy of Sciences of the United States of America. 94 (2): 569–574. doi:10.1073/pnas.94.2.569. ISSN 0027-8424. PMC 19554. PMID 9012825.CS1 maint: PMC format (link)
- ↑ Radomska, H. S.; et al. (1998). "CCAAT/enhancer binding protein alpha is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors". Molecular and Cellular Biology. 18 (7): 4301–4314. doi:10.1128/mcb.18.7.4301. ISSN 0270-7306. PMC 109014. PMID 9632814.CS1 maint: PMC format (link)
- ↑ Zhang, P.; et al. (1998). "Upregulation of interleukin 6 and granulocyte colony-stimulating factor receptors by transcription factor CCAAT enhancer binding protein alpha (C/EBP alpha) is critical for granulopoiesis". The Journal of Experimental Medicine. 188 (6): 1173–1184. doi:10.1084/jem.188.6.1173. ISSN 0022-1007. PMC 2212540. PMID 9743535.
- ↑ Fazi, Francesco; et al. (2005). "A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis". Cell. 123 (5): 819–831. doi:10.1016/j.cell.2005.09.023. ISSN 0092-8674. PMID 16325577.
- ↑ Zhang, Pu; et al. (2004). "Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha". Immunity. 21 (6): 853–863. doi:10.1016/j.immuni.2004.11.006. ISSN 1074-7613. PMID 15589173.
- ↑ Pedersen, T. A.; et al. (2001). "Cooperation between C/EBPalpha TBP/TFIIB and SWI/SNF recruiting domains is required for adipocyte differentiation". Genes & Development. 15 (23): 3208–3216. doi:10.1101/gad.209901. ISSN 0890-9369. PMC 312836. PMID 11731483.CS1 maint: PMC format (link)
- ↑ Slomiany, B. A.; et al. (2000). "C/EBPalpha inhibits cell growth via direct repression of E2F-DP-mediated transcription". Molecular and Cellular Biology. 20 (16): 5986–5997. doi:10.1128/mcb.20.16.5986-5997.2000. ISSN 0270-7306. PMC 86075. PMID 10913181.CS1 maint: PMC format (link)
- ↑ Timchenko, N. A.; et al. (1996). "CCAAT/enhancer-binding protein alpha (C/EBP alpha) inhibits cell proliferation through the p21 (WAF-1/CIP-1/SDI-1) protein". Genes & Development. 10 (7): 804–815. doi:10.1101/gad.10.7.804. ISSN 0890-9369. PMID 8846917.
- ↑ Wang, H.; et al. (2001). "C/EBPalpha arrests cell proliferation through direct inhibition of Cdk2 and Cdk4". Molecular Cell. 8 (4): 817–828. doi:10.1016/s1097-2765(01)00366-5. ISSN 1097-2765. PMID 11684017.
- ↑ Wang, Qian-Fei; et al. (2003). "Cell cycle inhibition mediated by the outer surface of the C/EBPalpha basic region is required but not sufficient for granulopoiesis". Oncogene. 22 (17): 2548–2557. doi:10.1038/sj.onc.1206360. ISSN 0950-9232. PMID 12730669.
- ↑ Johansen, L. M.; et al. (2001). "c-Myc is a critical target for c/EBPalpha in granulopoiesis". Molecular and Cellular Biology. 21 (11): 3789–3806. doi:10.1128/MCB.21.11.3789-3806.2001. ISSN 0270-7306. PMC 87031. PMID 11340171.CS1 maint: PMC format (link)
- ↑ Porse, B. T.; et al. (2001). "E2F repression by C/EBPalpha is required for adipogenesis and granulopoiesis in vivo". Cell. 107 (2): 247–258. doi:10.1016/s0092-8674(01)00516-5. ISSN 0092-8674. PMID 11672531.
- ↑ Smith, Matthew L.; et al. (2004). "Mutation of CEBPA in familial acute myeloid leukemia". The New England Journal of Medicine. 351 (23): 2403–2407. doi:10.1056/NEJMoa041331. ISSN 1533-4406. PMID 15575056.
- ↑ Nanri, Tomoko; et al. (2010). "A family harboring a germ-line N-terminal C/EBPalpha mutation and development of acute myeloid leukemia with an additional somatic C-terminal C/EBPalpha mutation". Genes, Chromosomes & Cancer. 49 (3): 237–241. doi:10.1002/gcc.20734. ISSN 1098-2264. PMID 19953636.
- ↑ Sellick, G. S.; et al. (2005). "Further evidence that germline CEBPA mutations cause dominant inheritance of acute myeloid leukaemia". Leukemia. 19 (7): 1276–1278. doi:10.1038/sj.leu.2403788. ISSN 0887-6924. PMID 15902292.
- ↑ Taskesen, Erdogan; et al. (2011-02-24). "Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity". Blood. 117 (8): 2469–2475. doi:10.1182/blood-2010-09-307280. ISSN 1528-0020. PMID 21177436.
- ↑ Smith, Matthew L.; et al. (2004-12-02). "Mutation of CEBPA in familial acute myeloid leukemia". The New England Journal of Medicine. 351 (23): 2403–2407. doi:10.1056/NEJMoa041331. ISSN 1533-4406. PMID 15575056.
- ↑ Sellick, G. S.; et al. (2005-07). "Further evidence that germline CEBPA mutations cause dominant inheritance of acute myeloid leukaemia". Leukemia. 19 (7): 1276–1278. doi:10.1038/sj.leu.2403788. ISSN 0887-6924. PMID 15902292. Check date values in:
|date=(help) - ↑ Renneville, A.; et al. (2009-04). "Another pedigree with familial acute myeloid leukemia and germline CEBPA mutation". Leukemia. 23 (4): 804–806. doi:10.1038/leu.2008.294. ISSN 1476-5551. PMID 18946494. Check date values in:
|date=(help) - ↑ 38.0 38.1 Pabst, Thomas; et al. (2008-11-01). "Somatic CEBPA mutations are a frequent second event in families with germline CEBPA mutations and familial acute myeloid leukemia". Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 26 (31): 5088–5093. doi:10.1200/JCO.2008.16.5563. ISSN 1527-7755. PMID 18768433.
- ↑ Debeljak, Maruša; et al. (2013-07). "Concordant acute myeloblastic leukemia in monozygotic twins with germline and shared somatic mutations in the gene for CCAAT-enhancer-binding protein α with 13 years difference at onset". Haematologica. 98 (7): e73–74. doi:10.3324/haematol.2012.082578. ISSN 1592-8721. PMC 3696596. PMID 23716546. Check date values in:
|date=(help) - ↑ 40.0 40.1 Taskesen, Erdogan; et al. (2011-02-24). "Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity". Blood. 117 (8): 2469–2475. doi:10.1182/blood-2010-09-307280. ISSN 1528-0020. PMID 21177436.
- ↑ Pathak, Anand; et al. (2016-07). "Whole exome sequencing reveals a C-terminal germline variant in CEBPA-associated acute myeloid leukemia: 45-year follow up of a large family". Haematologica. 101 (7): 846–852. doi:10.3324/haematol.2015.130799. ISSN 1592-8721. PMC 5004464. PMID 26721895. Check date values in:
|date=(help) - ↑ Mendoza, Hadrian; et al. (2021-05). "A case of acute myeloid leukemia with unusual germline CEBPA mutation: lessons learned about mutation detection, location, and penetrance". Leukemia & Lymphoma. 62 (5): 1251–1254. doi:10.1080/10428194.2020.1861276. ISSN 1029-2403. PMID 33345654 Check
|pmid=value (help). Check date values in:|date=(help)
Notes
*Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the Associate Editor or other CCGA representative. When pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author.
Prior Author(s):
Paul Defazio, MSc, Monash Health
*Citation of this Page: “Acute myeloid leukaemia with CEBPA mutation”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 07/3/2025, https://ccga.io/index.php/HAEM5:Acute_myeloid_leukaemia_with_CEBPA_mutation.