HAEM5:Acute myeloid leukaemia with NPM1 mutation: Difference between revisions
| [checked revision] | [checked revision] |
Bailey.Glen (talk | contribs) No edit summary |
Bailey.Glen (talk | contribs) No edit summary |
||
| Line 71: | Line 71: | ||
<blockquote class='blockedit'>{{Box-round|title=v4:Clinical Features|The content below was from the old template. Please incorporate above.}} | <blockquote class='blockedit'>{{Box-round|title=v4:Clinical Features|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
Anemia, thrombocytopenia, high white blood cell and platelet counts | Anemia, thrombocytopenia, high white blood cell and platelet counts | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
==Sites of Involvement== | ==Sites of Involvement== | ||
| Line 127: | Line 130: | ||
<blockquote class='blockedit'>{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}} | <blockquote class='blockedit'>{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
Rare gene fusions involving ''NPM1'' genes (NPM1-MLF1 and NPM1–HAUS1) have been reported in patients with AML and are associated with cytoplasmic accumulation of NPM1<ref name=":2">{{Cite journal|last=Woolthuis|first=Carolien M.|last2=Mulder|first2=André B.|last3=Verkaik-Schakel|first3=Rikst Nynke|last4=Rosati|first4=Stefano|last5=Diepstra|first5=Arjan|last6=van den Berg|first6=Eva|last7=Schuringa|first7=Jan Jacob|last8=Vellenga|first8=Edo|last9=Kluin|first9=Philip M.|date=2013|title=A single center analysis of nucleophosmin in acute myeloid leukemia: value of combining immunohistochemistry with molecular mutation analysis|url=https://www.ncbi.nlm.nih.gov/pubmed/23716555|journal=Haematologica|volume=98|issue=10|pages=1532–1538|doi=10.3324/haematol.2012.079806|issn=1592-8721|pmc=3789457|pmid=23716555}}</ref><ref>{{Cite journal|last=Campregher|first=Paulo Vidal|last2=de Oliveira Pereira|first2=Welbert|last3=Lisboa|first3=Bianca|last4=Puga|first4=Renato|last5=Deolinda|first5=Elvira Rodrigues Pereira Velloso|last6=Helman|first6=Ricardo|last7=Marti|first7=Luciana Cavalheiro|last8=Guerra|first8=João Carlos Campos|last9=Manola|first9=Kalliopi N.|date=2016|title=A novel mechanism of NPM1 cytoplasmic localization in acute myeloid leukemia: the recurrent gene fusion NPM1-HAUS1|url=https://www.ncbi.nlm.nih.gov/pubmed/27036161|journal=Haematologica|volume=101|issue=7|pages=e287–290|doi=10.3324/haematol.2015.137364|issn=1592-8721|pmc=5004474|pmid=27036161}}</ref><ref name=":3">{{Cite journal|last=Falini|first=B.|last2=Bigerna|first2=B.|last3=Pucciarini|first3=A.|last4=Tiacci|first4=E.|last5=Mecucci|first5=C.|last6=Morris|first6=S. W.|last7=Bolli|first7=N.|last8=Rosati|first8=R.|last9=Hanissian|first9=S.|date=2006|title=Aberrant subcellular expression of nucleophosmin and NPM-MLF1 fusion protein in acute myeloid leukaemia carrying t(3;5): a comparison with NPMc+ AML|url=https://www.ncbi.nlm.nih.gov/pubmed/16341033|journal=Leukemia|volume=20|issue=2|pages=368–371|doi=10.1038/sj.leu.2404068|issn=0887-6924|pmid=16341033}}</ref>. | Rare gene fusions involving ''NPM1'' genes (NPM1-MLF1 and NPM1–HAUS1) have been reported in patients with AML and are associated with cytoplasmic accumulation of NPM1<ref name=":2">{{Cite journal|last=Woolthuis|first=Carolien M.|last2=Mulder|first2=André B.|last3=Verkaik-Schakel|first3=Rikst Nynke|last4=Rosati|first4=Stefano|last5=Diepstra|first5=Arjan|last6=van den Berg|first6=Eva|last7=Schuringa|first7=Jan Jacob|last8=Vellenga|first8=Edo|last9=Kluin|first9=Philip M.|date=2013|title=A single center analysis of nucleophosmin in acute myeloid leukemia: value of combining immunohistochemistry with molecular mutation analysis|url=https://www.ncbi.nlm.nih.gov/pubmed/23716555|journal=Haematologica|volume=98|issue=10|pages=1532–1538|doi=10.3324/haematol.2012.079806|issn=1592-8721|pmc=3789457|pmid=23716555}}</ref><ref>{{Cite journal|last=Campregher|first=Paulo Vidal|last2=de Oliveira Pereira|first2=Welbert|last3=Lisboa|first3=Bianca|last4=Puga|first4=Renato|last5=Deolinda|first5=Elvira Rodrigues Pereira Velloso|last6=Helman|first6=Ricardo|last7=Marti|first7=Luciana Cavalheiro|last8=Guerra|first8=João Carlos Campos|last9=Manola|first9=Kalliopi N.|date=2016|title=A novel mechanism of NPM1 cytoplasmic localization in acute myeloid leukemia: the recurrent gene fusion NPM1-HAUS1|url=https://www.ncbi.nlm.nih.gov/pubmed/27036161|journal=Haematologica|volume=101|issue=7|pages=e287–290|doi=10.3324/haematol.2015.137364|issn=1592-8721|pmc=5004474|pmid=27036161}}</ref><ref name=":3">{{Cite journal|last=Falini|first=B.|last2=Bigerna|first2=B.|last3=Pucciarini|first3=A.|last4=Tiacci|first4=E.|last5=Mecucci|first5=C.|last6=Morris|first6=S. W.|last7=Bolli|first7=N.|last8=Rosati|first8=R.|last9=Hanissian|first9=S.|date=2006|title=Aberrant subcellular expression of nucleophosmin and NPM-MLF1 fusion protein in acute myeloid leukaemia carrying t(3;5): a comparison with NPMc+ AML|url=https://www.ncbi.nlm.nih.gov/pubmed/16341033|journal=Leukemia|volume=20|issue=2|pages=368–371|doi=10.1038/sj.leu.2404068|issn=0887-6924|pmid=16341033}}</ref>. | ||
| Line 140: | Line 143: | ||
|} | |} | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
| Line 147: | Line 153: | ||
* Individual Region Genomic Gain/Loss/LOH | * Individual Region Genomic Gain/Loss/LOH | ||
* Characteristic Chromosomal Patterns | * Characteristic Chromosomal Patterns | ||
* Gene Mutations (SNV/INDEL)}} | * Gene Mutations (SNV/INDEL)}}</blockquote> | ||
*Diagnosis based on identification of genetic lesion of NPM1 by immunohistochemical and /or molecular testing. | *Diagnosis based on identification of genetic lesion of NPM1 by immunohistochemical and /or molecular testing. | ||
| Line 155: | Line 161: | ||
*Minimal residual disease (MRD) monitoring of AML patients after chemotherapy provides important prognostic information<ref>{{Cite journal|last=Grimwade|first=David|last2=Freeman|first2=Sylvie D.|date=2014|title=Defining minimal residual disease in acute myeloid leukemia: which platforms are ready for "prime time"?|url=https://www.ncbi.nlm.nih.gov/pubmed/25049280|journal=Blood|volume=124|issue=23|pages=3345–3355|doi=10.1182/blood-2014-05-577593|issn=1528-0020|pmid=25049280}}</ref><ref>{{Cite journal|last=Hourigan|first=Christopher S.|last2=Karp|first2=Judith E.|date=2013|title=Minimal residual disease in acute myeloid leukaemia|url=https://www.ncbi.nlm.nih.gov/pubmed/23799371|journal=Nature Reviews. Clinical Oncology|volume=10|issue=8|pages=460–471|doi=10.1038/nrclinonc.2013.100|issn=1759-4782|pmc=4163748|pmid=23799371}}</ref>. Because ''NPM1'' mutations are very stable over the course of disease, they are an excellent marker for monitoring minimal residual disease (MRD) for ''NPM1'' mutated AML patients<ref name=":3" /><ref>{{Cite journal|last=Falini|first=B.|last2=Bolli|first2=N.|last3=Liso|first3=A.|last4=Martelli|first4=M. P.|last5=Mannucci|first5=R.|last6=Pileri|first6=S.|last7=Nicoletti|first7=I.|date=2009|title=Altered nucleophosmin transport in acute myeloid leukaemia with mutated NPM1: molecular basis and clinical implications|url=https://www.ncbi.nlm.nih.gov/pubmed/19516275|journal=Leukemia|volume=23|issue=10|pages=1731–1743|doi=10.1038/leu.2009.124|issn=1476-5551|pmid=19516275}}</ref>. Indeed, several studies have suggested that MRD accessed by ''NPM1'' mutation level using PCR-based methods is a strong independent predictor of higher relapse risk<ref name=":7" /><ref>{{Cite journal|last=Ivey|first=Adam|last2=Hills|first2=Robert K.|last3=Simpson|first3=Michael A.|last4=Jovanovic|first4=Jelena V.|last5=Gilkes|first5=Amanda|last6=Grech|first6=Angela|last7=Patel|first7=Yashma|last8=Bhudia|first8=Neesa|last9=Farah|first9=Hassan|date=2016|title=Assessment of Minimal Residual Disease in Standard-Risk AML|url=https://www.ncbi.nlm.nih.gov/pubmed/26789727|journal=The New England Journal of Medicine|volume=374|issue=5|pages=422–433|doi=10.1056/NEJMoa1507471|issn=1533-4406|pmid=26789727}}</ref>. | *Minimal residual disease (MRD) monitoring of AML patients after chemotherapy provides important prognostic information<ref>{{Cite journal|last=Grimwade|first=David|last2=Freeman|first2=Sylvie D.|date=2014|title=Defining minimal residual disease in acute myeloid leukemia: which platforms are ready for "prime time"?|url=https://www.ncbi.nlm.nih.gov/pubmed/25049280|journal=Blood|volume=124|issue=23|pages=3345–3355|doi=10.1182/blood-2014-05-577593|issn=1528-0020|pmid=25049280}}</ref><ref>{{Cite journal|last=Hourigan|first=Christopher S.|last2=Karp|first2=Judith E.|date=2013|title=Minimal residual disease in acute myeloid leukaemia|url=https://www.ncbi.nlm.nih.gov/pubmed/23799371|journal=Nature Reviews. Clinical Oncology|volume=10|issue=8|pages=460–471|doi=10.1038/nrclinonc.2013.100|issn=1759-4782|pmc=4163748|pmid=23799371}}</ref>. Because ''NPM1'' mutations are very stable over the course of disease, they are an excellent marker for monitoring minimal residual disease (MRD) for ''NPM1'' mutated AML patients<ref name=":3" /><ref>{{Cite journal|last=Falini|first=B.|last2=Bolli|first2=N.|last3=Liso|first3=A.|last4=Martelli|first4=M. P.|last5=Mannucci|first5=R.|last6=Pileri|first6=S.|last7=Nicoletti|first7=I.|date=2009|title=Altered nucleophosmin transport in acute myeloid leukaemia with mutated NPM1: molecular basis and clinical implications|url=https://www.ncbi.nlm.nih.gov/pubmed/19516275|journal=Leukemia|volume=23|issue=10|pages=1731–1743|doi=10.1038/leu.2009.124|issn=1476-5551|pmid=19516275}}</ref>. Indeed, several studies have suggested that MRD accessed by ''NPM1'' mutation level using PCR-based methods is a strong independent predictor of higher relapse risk<ref name=":7" /><ref>{{Cite journal|last=Ivey|first=Adam|last2=Hills|first2=Robert K.|last3=Simpson|first3=Michael A.|last4=Jovanovic|first4=Jelena V.|last5=Gilkes|first5=Amanda|last6=Grech|first6=Angela|last7=Patel|first7=Yashma|last8=Bhudia|first8=Neesa|last9=Farah|first9=Hassan|date=2016|title=Assessment of Minimal Residual Disease in Standard-Risk AML|url=https://www.ncbi.nlm.nih.gov/pubmed/26789727|journal=The New England Journal of Medicine|volume=374|issue=5|pages=422–433|doi=10.1056/NEJMoa1507471|issn=1533-4406|pmid=26789727}}</ref>. | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
==Individual Region Genomic Gain / Loss / LOH== | ==Individual Region Genomic Gain / Loss / LOH== | ||
| Line 203: | Line 212: | ||
|} | |} | ||
<blockquote class='blockedit'>{{Box-round|title=v4:Genomic Gain/Loss/LOH|The content below was from the old template. Please incorporate above.}} | <blockquote class='blockedit'>{{Box-round|title=v4:Genomic Gain/Loss/LOH|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
==Characteristic Chromosomal Patterns== | ==Characteristic Chromosomal Patterns== | ||
| Line 229: | Line 241: | ||
|} | |} | ||
<blockquote class='blockedit'>{{Box-round|title=v4:Characteristic Chromosomal Aberrations / Patterns|The content below was from the old template. Please incorporate above.}} | <blockquote class='blockedit'>{{Box-round|title=v4:Characteristic Chromosomal Aberrations / Patterns|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
trisomy 8, deletion 9q | trisomy 8, deletion 9q | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
==Gene Mutations (SNV / INDEL)== | ==Gene Mutations (SNV / INDEL)== | ||
| Line 268: | Line 283: | ||
<blockquote class='blockedit'>{{Box-round|title=v4:Gene Mutations (SNV/INDEL)|The content below was from the old template. Please incorporate above.}} | <blockquote class='blockedit'>{{Box-round|title=v4:Gene Mutations (SNV/INDEL)|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
*Studies investigating the methods by which ''NPM1'' mutations lead to leukemogenesis show that ''NPM1'' mutation alone is not sufficient to cause AML<ref name=":4">{{Cite journal|last=Heath|first=E. M.|last2=Chan|first2=S. M.|last3=Minden|first3=M. D.|last4=Murphy|first4=T.|last5=Shlush|first5=L. I.|last6=Schimmer|first6=A. D.|date=2017|title=Biological and clinical consequences of NPM1 mutations in AML|url=https://www.ncbi.nlm.nih.gov/pubmed/28111462|journal=Leukemia|volume=31|issue=4|pages=798–807|doi=10.1038/leu.2017.30|issn=1476-5551|pmid=28111462}}</ref>. | *Studies investigating the methods by which ''NPM1'' mutations lead to leukemogenesis show that ''NPM1'' mutation alone is not sufficient to cause AML<ref name=":4">{{Cite journal|last=Heath|first=E. M.|last2=Chan|first2=S. M.|last3=Minden|first3=M. D.|last4=Murphy|first4=T.|last5=Shlush|first5=L. I.|last6=Schimmer|first6=A. D.|date=2017|title=Biological and clinical consequences of NPM1 mutations in AML|url=https://www.ncbi.nlm.nih.gov/pubmed/28111462|journal=Leukemia|volume=31|issue=4|pages=798–807|doi=10.1038/leu.2017.30|issn=1476-5551|pmid=28111462}}</ref>. | ||
| Line 300: | Line 315: | ||
|} | |} | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
==Epigenomic Alterations== | ==Epigenomic Alterations== | ||
| Line 325: | Line 343: | ||
|} | |} | ||
<blockquote class='blockedit'>{{Box-round|title=v4:Genes and Main Pathways Involved|The content below was from the old template. Please incorporate above.}} | <blockquote class='blockedit'>{{Box-round|title=v4:Genes and Main Pathways Involved|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
*The NPM1 gene encodes nucleophosmin (NPM), which is a multifunctional protein that shuttles between the nucleus and the cytoplasm, and binds many partners in distinct cellular compartments. It is involved in many cellular processes including ribosome biogenesis, maintenance of genomic stability and regulation of cellular proliferation. | *The NPM1 gene encodes nucleophosmin (NPM), which is a multifunctional protein that shuttles between the nucleus and the cytoplasm, and binds many partners in distinct cellular compartments. It is involved in many cellular processes including ribosome biogenesis, maintenance of genomic stability and regulation of cellular proliferation. | ||
| Line 331: | Line 349: | ||
*Mutations in ''NPM1'' represent a distinct entity in the World Health Organization (WHO) classification and commonly indicate a better risk prognosis<ref name=":4" />. Predominantly, observed ''NPM1'' variants are sited in exon 12 and cause a frameshift in the C-terminal domain, affecting one or both of the key tryptophan residues in the domain. Such ''NPM1'' mutations result in a ‘functionally stronger’ nuclear export than nuclear import signal (compared to wild-type NPM1) and thus there is cytoplasmic localization of the protein – ‘cytoplasmic NPM1’ (NPM1c)<ref name=":4" /><ref name=":6" />. See Figure 3 in <ref name=":4" />. NPM1c sequesters ARF to the cytoplasm; however, unlike the ARF-NPM1 complex in the nucleolus, NPM1c is unable to stabilize ARF in the cytoplasm and consequently ARF becomes unstable and degrades<ref>{{Cite journal|last=Colombo|first=Emanuela|last2=Martinelli|first2=Paola|last3=Zamponi|first3=Raffaella|last4=Shing|first4=Danielle C.|last5=Bonetti|first5=Paola|last6=Luzi|first6=Lucilla|last7=Volorio|first7=Sara|last8=Bernard|first8=Loris|last9=Pruneri|first9=Giancarlo|date=2006|title=Delocalization and destabilization of the Arf tumor suppressor by the leukemia-associated NPM mutant|url=https://www.ncbi.nlm.nih.gov/pubmed/16540653|journal=Cancer Research|volume=66|issue=6|pages=3044–3050|doi=10.1158/0008-5472.CAN-05-2378|issn=0008-5472|pmid=16540653}}</ref>. Without ARF, there is lack of MDM2 inhibition, leading to p53 inactivation by MDM2 and the loss of growth inhibition by p53<ref name=":4" />. In the context of ''NPM1'' mutations, NPM1 haploinsufficiency results in uncontrolled centrosome duplication and consequently supernumerary centrosomes (a potential mechanism for tumor development)<ref>{{Cite journal|last=Sportoletti|first=Paolo|last2=Grisendi|first2=Silvia|last3=Majid|first3=Samia M.|last4=Cheng|first4=Ke|last5=Clohessy|first5=John G.|last6=Viale|first6=Agnes|last7=Teruya-Feldstein|first7=Julie|last8=Pandolfi|first8=Pier Paolo|date=2008|title=Npm1 is a haploinsufficient suppressor of myeloid and lymphoid malignancies in the mouse|url=https://www.ncbi.nlm.nih.gov/pubmed/18212245|journal=Blood|volume=111|issue=7|pages=3859–3862|doi=10.1182/blood-2007-06-098251|issn=0006-4971|pmc=2275037|pmid=18212245}}</ref>. The loss of NPM1 function leads to activation of Myc oncogene (increased oncogene levels), promoting growth and cell proliferation. As expected, in the cytoplasm, NPM1c inhibits caspase-6/-8, promoting growth<ref name=":4" />. | *Mutations in ''NPM1'' represent a distinct entity in the World Health Organization (WHO) classification and commonly indicate a better risk prognosis<ref name=":4" />. Predominantly, observed ''NPM1'' variants are sited in exon 12 and cause a frameshift in the C-terminal domain, affecting one or both of the key tryptophan residues in the domain. Such ''NPM1'' mutations result in a ‘functionally stronger’ nuclear export than nuclear import signal (compared to wild-type NPM1) and thus there is cytoplasmic localization of the protein – ‘cytoplasmic NPM1’ (NPM1c)<ref name=":4" /><ref name=":6" />. See Figure 3 in <ref name=":4" />. NPM1c sequesters ARF to the cytoplasm; however, unlike the ARF-NPM1 complex in the nucleolus, NPM1c is unable to stabilize ARF in the cytoplasm and consequently ARF becomes unstable and degrades<ref>{{Cite journal|last=Colombo|first=Emanuela|last2=Martinelli|first2=Paola|last3=Zamponi|first3=Raffaella|last4=Shing|first4=Danielle C.|last5=Bonetti|first5=Paola|last6=Luzi|first6=Lucilla|last7=Volorio|first7=Sara|last8=Bernard|first8=Loris|last9=Pruneri|first9=Giancarlo|date=2006|title=Delocalization and destabilization of the Arf tumor suppressor by the leukemia-associated NPM mutant|url=https://www.ncbi.nlm.nih.gov/pubmed/16540653|journal=Cancer Research|volume=66|issue=6|pages=3044–3050|doi=10.1158/0008-5472.CAN-05-2378|issn=0008-5472|pmid=16540653}}</ref>. Without ARF, there is lack of MDM2 inhibition, leading to p53 inactivation by MDM2 and the loss of growth inhibition by p53<ref name=":4" />. In the context of ''NPM1'' mutations, NPM1 haploinsufficiency results in uncontrolled centrosome duplication and consequently supernumerary centrosomes (a potential mechanism for tumor development)<ref>{{Cite journal|last=Sportoletti|first=Paolo|last2=Grisendi|first2=Silvia|last3=Majid|first3=Samia M.|last4=Cheng|first4=Ke|last5=Clohessy|first5=John G.|last6=Viale|first6=Agnes|last7=Teruya-Feldstein|first7=Julie|last8=Pandolfi|first8=Pier Paolo|date=2008|title=Npm1 is a haploinsufficient suppressor of myeloid and lymphoid malignancies in the mouse|url=https://www.ncbi.nlm.nih.gov/pubmed/18212245|journal=Blood|volume=111|issue=7|pages=3859–3862|doi=10.1182/blood-2007-06-098251|issn=0006-4971|pmc=2275037|pmid=18212245}}</ref>. The loss of NPM1 function leads to activation of Myc oncogene (increased oncogene levels), promoting growth and cell proliferation. As expected, in the cytoplasm, NPM1c inhibits caspase-6/-8, promoting growth<ref name=":4" />. | ||
<blockquote class="blockedit"> | |||
<center><span style="color:Maroon">'''End of V4 Section'''</span> | |||
---- | |||
</blockquote> | </blockquote> | ||
==Genetic Diagnostic Testing Methods== | ==Genetic Diagnostic Testing Methods== | ||