HAEM5:Myeloid/lymphoid neoplasm with FGFR1 rearrangement: Difference between revisions
| [checked revision] | [checked revision] |
Bailey.Glen (talk | contribs) No edit summary |
Bailey.Glen (talk | contribs) Removed old template contents |
||
| Line 1: | Line 1: | ||
{{DISPLAYTITLE:Myeloid/lymphoid neoplasm with FGFR1 rearrangement}} | {{DISPLAYTITLE:Myeloid/lymphoid neoplasm with FGFR1 rearrangement}} | ||
[[HAEM5:Table_of_Contents|Haematolymphoid Tumours (WHO Classification, 5th ed.)]] | [[HAEM5:Table_of_Contents|Haematolymphoid Tumours (WHO Classification, 5th ed.)]] | ||
{{Under Construction}} | {{Under Construction}} | ||
<blockquote class= | <blockquote class="blockedit">{{Box-round|title=Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification|This page was converted to the new template on 2023-12-07. The original page can be found at [[HAEM4:Myeloid/Lymphoid Neoplasms with FGFR1 Rearrangement]]. | ||
}}</blockquote> | }}</blockquote> | ||
| Line 37: | Line 38: | ||
|} | |} | ||
==WHO Essential and Desirable Genetic Diagnostic Criteria== | ==WHO Essential and Desirable Genetic Diagnostic Criteria== | ||
<span style="color:#0070C0">(''Instructions: The table will have the diagnostic criteria from the WHO book <u>autocompleted</u>; remove any <u>non</u>-genetics related criteria. If applicable, add text about other classification'' ''systems that define this entity and specify how the genetics-related criteria differ.'')</span> | <span style="color:#0070C0">(''Instructions: The table will have the diagnostic criteria from the WHO book <u>autocompleted</u>; remove any <u>non</u>-genetics related criteria. If applicable, add text about other classification'' ''systems that define this entity and specify how the genetics-related criteria differ.'')</span> | ||
| Line 215: | Line 126: | ||
|} | |} | ||
<blockquote class= | <blockquote class="blockedit">{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
Various translocations with an 8p11 breakpoint are found. Depending on the partners, a variety of fusion genes with part of ''FGFR1'' from 8p11 can be formed, encoding aberrant tyrosine kinases. Note: Some precise mapping has positioned ''FGFR1'' locus to 8p12, instead of 8p11 <ref>{{Cite journal|last=Mozziconacci|first=Marie-Joëlle|last2=Carbuccia|first2=Nadine|last3=Prebet|first3=Thomas|last4=Charbonnier|first4=Aude|last5=Murati|first5=Anne|last6=Vey|first6=Norbert|last7=Chaffanet|first7=Max|last8=Birnbaum|first8=Daniel|date=2008|title=Common features of myeloproliferative disorders with t(8;9)(p12;q33) and CEP110–FGFR1 fusion: Report of a new case and review of the literature|url=https://linkinghub.elsevier.com/retrieve/pii/S0145212607004444|journal=Leukemia Research|language=en|volume=32|issue=8|pages=1304–1308|doi=10.1016/j.leukres.2007.11.012}}</ref>. | Various translocations with an 8p11 breakpoint are found. Depending on the partners, a variety of fusion genes with part of ''FGFR1'' from 8p11 can be formed, encoding aberrant tyrosine kinases. Note: Some precise mapping has positioned ''FGFR1'' locus to 8p12, instead of 8p11 <ref>{{Cite journal|last=Mozziconacci|first=Marie-Joëlle|last2=Carbuccia|first2=Nadine|last3=Prebet|first3=Thomas|last4=Charbonnier|first4=Aude|last5=Murati|first5=Anne|last6=Vey|first6=Norbert|last7=Chaffanet|first7=Max|last8=Birnbaum|first8=Daniel|date=2008|title=Common features of myeloproliferative disorders with t(8;9)(p12;q33) and CEP110–FGFR1 fusion: Report of a new case and review of the literature|url=https://linkinghub.elsevier.com/retrieve/pii/S0145212607004444|journal=Leukemia Research|language=en|volume=32|issue=8|pages=1304–1308|doi=10.1016/j.leukres.2007.11.012}}</ref>. | ||
| Line 225: | Line 136: | ||
|t(8;13)(p11.2;q12.1) | |t(8;13)(p11.2;q12.1) | ||
|''ZMYM2-FGFR1'' | |''ZMYM2-FGFR1'' | ||
|Most common, around 40% <ref>{{Cite journal|last=Popovici|first=C.|last2=Adelaide|first2=J.|last3=Ollendorff|first3=V.|last4=Chaffanet|first4=M.|last5=Guasch|first5=G.|last6=Jacrot|first6=M.|last7=Leroux|first7=D.|last8=Birnbaum|first8=D.|last9=Pebusque|first9=M.-J.|date=1998|title=Fibroblast growth factor receptor 1 is fused to FIM in stem-cell myeloproliferative disorder with t(8;13)(p12;q12)|url=http://www.pnas.org/cgi/doi/10.1073/pnas.95.10.5712|journal=Proceedings of the National Academy of Sciences|language=en|volume=95|issue=10|pages=5712–5717|doi=10.1073/pnas.95.10.5712|issn=0027-8424|pmc=PMC20444|pmid=9576949}}</ref><ref>{{Cite journal|last=Cross|first=Nicholas C. P.|last2=Goldman|first2=John M.|last3=Jennings|first3=Barbara A.|last4=Hernandez|first4=Jesus M.|last5=Gonçalves|first5=Cristina|last6=Aguiar|first6=Ricardo C. T.|last7=Macdonald|first7=Donald H. C.|last8=Chase|first8=Andrew|last9=Kulkarni|first9=Shashikant|date=1998|title=Consistent Fusion of ZNF198 to the Fibroblast Growth Factor Receptor-1 in the t(8;13)(p11;q12) Myeloproliferative Syndrome|url=https://ashpublications.org/blood/article/92/5/1735/247374/Consistent-Fusion-of-ZNF198-to-the-Fibroblast|journal=Blood|language=en|volume=92|issue=5|pages=1735–1742|doi=10.1182/blood.V92.5.1735|issn=0006-4971}}</ref><ref>{{Cite journal|last=Smedley|first=D|date=1998|title=The t(8;13)(p11;q11-12) rearrangement associated with an atypical myeloproliferative disorder fuses the fibroblast growth factor receptor 1 gene to a novel gene RAMP|url=https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/7.4.637|journal=Human Molecular Genetics|volume=7|issue=4|pages=637–642|doi=10.1093/hmg/7.4.637}}</ref><ref name=":3">{{Cite journal|last=Xiao|first=Sheng|last2=Nalabolu|first2=Srinivasa R.|last3=Aster|first3=Jon C.|last4=Ma|first4=Junli|last5=Abruzzo|first5=Lynne|last6=Jaffe|first6=Elaine S.|last7=Stone|first7=Richard|last8=Weissman|first8=Sherman M.|last9=Hudson|first9=Thomas J.|date=1998|title=FGFR1 is fused with a novel zinc-finger gene, ZNF198, in the t(8;13) leukaemia/lymphoma syndrome|url=http://www.nature.com/articles/ng0198-84|journal=Nature Genetics|language=en|volume=18|issue=1|pages=84–87|doi=10.1038/ng0198-84|issn=1061-4036}}</ref><ref>{{Cite journal|last=Bain|first=Barbara J.|last2=Fletcher|first2=Sarah H.|date=2007-08|title=Chronic Eosinophilic Leukemias and the Myeloproliferative Variant of the Hypereosinophilic Syndrome|url=http://dx.doi.org/10.1016/j.iac.2007.06.001|journal=Immunology and Allergy Clinics of North America|volume=27|issue=3|pages=377–388|doi=10.1016/j.iac.2007.06.001|issn=0889-8561}}</ref><ref name=":2" /> | |Most common, around 40% <ref>{{Cite journal|last=Popovici|first=C.|last2=Adelaide|first2=J.|last3=Ollendorff|first3=V.|last4=Chaffanet|first4=M.|last5=Guasch|first5=G.|last6=Jacrot|first6=M.|last7=Leroux|first7=D.|last8=Birnbaum|first8=D.|last9=Pebusque|first9=M.-J.|date=1998|title=Fibroblast growth factor receptor 1 is fused to FIM in stem-cell myeloproliferative disorder with t(8;13)(p12;q12)|url=http://www.pnas.org/cgi/doi/10.1073/pnas.95.10.5712|journal=Proceedings of the National Academy of Sciences|language=en|volume=95|issue=10|pages=5712–5717|doi=10.1073/pnas.95.10.5712|issn=0027-8424|pmc=PMC20444|pmid=9576949}}</ref><ref>{{Cite journal|last=Cross|first=Nicholas C. P.|last2=Goldman|first2=John M.|last3=Jennings|first3=Barbara A.|last4=Hernandez|first4=Jesus M.|last5=Gonçalves|first5=Cristina|last6=Aguiar|first6=Ricardo C. T.|last7=Macdonald|first7=Donald H. C.|last8=Chase|first8=Andrew|last9=Kulkarni|first9=Shashikant|date=1998|title=Consistent Fusion of ZNF198 to the Fibroblast Growth Factor Receptor-1 in the t(8;13)(p11;q12) Myeloproliferative Syndrome|url=https://ashpublications.org/blood/article/92/5/1735/247374/Consistent-Fusion-of-ZNF198-to-the-Fibroblast|journal=Blood|language=en|volume=92|issue=5|pages=1735–1742|doi=10.1182/blood.V92.5.1735|issn=0006-4971}}</ref><ref>{{Cite journal|last=Smedley|first=D|date=1998|title=The t(8;13)(p11;q11-12) rearrangement associated with an atypical myeloproliferative disorder fuses the fibroblast growth factor receptor 1 gene to a novel gene RAMP|url=https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/7.4.637|journal=Human Molecular Genetics|volume=7|issue=4|pages=637–642|doi=10.1093/hmg/7.4.637}}</ref><ref name=":3">{{Cite journal|last=Xiao|first=Sheng|last2=Nalabolu|first2=Srinivasa R.|last3=Aster|first3=Jon C.|last4=Ma|first4=Junli|last5=Abruzzo|first5=Lynne|last6=Jaffe|first6=Elaine S.|last7=Stone|first7=Richard|last8=Weissman|first8=Sherman M.|last9=Hudson|first9=Thomas J.|date=1998|title=FGFR1 is fused with a novel zinc-finger gene, ZNF198, in the t(8;13) leukaemia/lymphoma syndrome|url=http://www.nature.com/articles/ng0198-84|journal=Nature Genetics|language=en|volume=18|issue=1|pages=84–87|doi=10.1038/ng0198-84|issn=1061-4036}}</ref><ref>{{Cite journal|last=Bain|first=Barbara J.|last2=Fletcher|first2=Sarah H.|date=2007-08|title=Chronic Eosinophilic Leukemias and the Myeloproliferative Variant of the Hypereosinophilic Syndrome|url=http://dx.doi.org/10.1016/j.iac.2007.06.001|journal=Immunology and Allergy Clinics of North America|volume=27|issue=3|pages=377–388|doi=10.1016/j.iac.2007.06.001|issn=0889-8561}}</ref><ref name=":2">{{Cite journal|last=Jackson|first=Courtney C.|last2=Medeiros|first2=L. Jeffrey|last3=Miranda|first3=Roberto N.|date=2010|title=8p11 myeloproliferative syndrome: a review|url=http://www.sciencedirect.com/science/article/pii/S0046817709004067|journal=Human Pathology|volume=41|issue=4|pages=461–476|doi=10.1016/j.humpath.2009.11.003|issn=0046-8177}}</ref> | ||
|- | |- | ||
|t(8;9)(p11.2;q33.2) | |t(8;9)(p11.2;q33.2) | ||
| Line 286: | Line 197: | ||
<blockquote class= | <blockquote class="blockedit">{{Box-round|title=v4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).|Please incorporate this section into the relevant tables found in: | ||
* Chromosomal Rearrangements (Gene Fusions) | * Chromosomal Rearrangements (Gene Fusions) | ||
* Individual Region Genomic Gain/Loss/LOH | * Individual Region Genomic Gain/Loss/LOH | ||
| Line 292: | Line 203: | ||
* Gene Mutations (SNV/INDEL)}}</blockquote> | * Gene Mutations (SNV/INDEL)}}</blockquote> | ||
Unlike myeloid/lymphoid neoplasms with ''[[Myeloid/Lymphoid Neoplasms with PDGFRA Rearrangement#cite ref-:0 1-4|PDGFRA]]'' or ''PDGFRB'' rearrangement, the prognosis for this ''FGFR1'' associated entity is poor even for patient in the chronic phase, due to the high incidence of transformation. There is no established tyrosine kinase inhibitor therapy for myeloproliferative neoplasms with ''FGFR1'' rearrangement. Midostaurin (PKC412) was reported to be effective in one case <ref>{{Cite journal|last=Chen|first=J.|last2=DeAngelo|first2=D. J.|last3=Kutok|first3=J. L.|last4=Williams|first4=I. R.|last5=Lee|first5=B. H.|last6=Wadleigh|first6=M.|last7=Duclos|first7=N.|last8=Cohen|first8=S.|last9=Adelsperger|first9=J.|date=2004|title=PKC412 inhibits the zinc finger 198-fibroblast growth factor receptor 1 fusion tyrosine kinase and is active in treatment of stem cell myeloproliferative disorder|url=http://www.pnas.org/cgi/doi/10.1073/pnas.0404438101|journal=Proceedings of the National Academy of Sciences|language=en|volume=101|issue=40|pages=14479–14484|doi=10.1073/pnas.0404438101|issn=0027-8424|pmc=PMC521956|pmid=15448205}}</ref>, and interferon has induced cytogenetic response in several cases <ref name=":1" /> <ref>{{Cite journal|last=Holmes|first=A L|last2=Raper|first2=R N|last3=Heilig|first3=J S|date=1998|title=Genetic analysis of Drosophila larval optic nerve development.|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1460051/|journal=Genetics|volume=148|issue=3|pages=1189–1201|issn=0016-6731|pmc=1460051|pmid=9539434}}</ref>. Nevertheless, haematopoietic stem cell transplantation should be considered even for patients in chronic phase. | Unlike myeloid/lymphoid neoplasms with ''[[Myeloid/Lymphoid Neoplasms with PDGFRA Rearrangement#cite ref-:0 1-4|PDGFRA]]'' or ''PDGFRB'' rearrangement, the prognosis for this ''FGFR1'' associated entity is poor even for patient in the chronic phase, due to the high incidence of transformation. There is no established tyrosine kinase inhibitor therapy for myeloproliferative neoplasms with ''FGFR1'' rearrangement. Midostaurin (PKC412) was reported to be effective in one case <ref>{{Cite journal|last=Chen|first=J.|last2=DeAngelo|first2=D. J.|last3=Kutok|first3=J. L.|last4=Williams|first4=I. R.|last5=Lee|first5=B. H.|last6=Wadleigh|first6=M.|last7=Duclos|first7=N.|last8=Cohen|first8=S.|last9=Adelsperger|first9=J.|date=2004|title=PKC412 inhibits the zinc finger 198-fibroblast growth factor receptor 1 fusion tyrosine kinase and is active in treatment of stem cell myeloproliferative disorder|url=http://www.pnas.org/cgi/doi/10.1073/pnas.0404438101|journal=Proceedings of the National Academy of Sciences|language=en|volume=101|issue=40|pages=14479–14484|doi=10.1073/pnas.0404438101|issn=0027-8424|pmc=PMC521956|pmid=15448205}}</ref>, and interferon has induced cytogenetic response in several cases <ref name=":1">{{Cite journal|last=Macdonald|first=Donald|last2=Reiter|first2=Andreas|last3=Cross|first3=Nicholas C.P.|date=2002|title=The 8p11 Myeloproliferative Syndrome: A Distinct Clinical Entity Caused by Constitutive Activation of FGFR1|url=https://www.karger.com/Article/FullText/46639|journal=Acta Haematologica|language=en|volume=107|issue=2|pages=101–107|doi=10.1159/000046639|issn=0001-5792}}</ref> <ref>{{Cite journal|last=Holmes|first=A L|last2=Raper|first2=R N|last3=Heilig|first3=J S|date=1998|title=Genetic analysis of Drosophila larval optic nerve development.|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1460051/|journal=Genetics|volume=148|issue=3|pages=1189–1201|issn=0016-6731|pmc=1460051|pmid=9539434}}</ref>. Nevertheless, haematopoietic stem cell transplantation should be considered even for patients in chronic phase. | ||
<blockquote class="blockedit"> | <blockquote class="blockedit"> | ||
| Line 391: | Line 302: | ||
|} | |} | ||
<blockquote class= | <blockquote class="blockedit">{{Box-round|title=v4:Characteristic Chromosomal Aberrations / Patterns|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
A variety of translocations involving 8p11 breakpoint. Secondary cytogenetic abnormalities also occur, most commonly trisomy 21 <ref name=":0" />. | A variety of translocations involving 8p11 breakpoint. Secondary cytogenetic abnormalities also occur, most commonly trisomy 21 <ref name=":0">Bain BJ, et al., (2017). Myeloid/lymphoid neoplasms with FGFR1 rearrangement in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. IARC Press: Lyon, France, p77-78.</ref>. | ||
<blockquote class="blockedit"> | <blockquote class="blockedit"> | ||
| Line 475: | Line 386: | ||
|} | |} | ||
<blockquote class= | <blockquote class="blockedit">{{Box-round|title=v4:Genes and Main Pathways Involved|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
Normal FGFR1 is a transmembrane protein with an extracellular ligand-binding domain, a transmembrane domain and a cytoplasmic tyrosine kinase domain. In inactive state, FGFR1 presents as monomers in cell membrane. Binding with ligands--the fibroblast growth factors (FGFs), induces dimerization and a conformational change that partially activates the enzymatic activity leading to transphosphorylation of the key tyrosine residue, an increase in enzymatic activity, phosphorylation of additional tyrosines and subsequent phosphorylation of downstream target substrates. The signaling pathways include Ras/MAPK, P13K, PLCÁ and STAT proteins. Fusion proteins with FGFR1 mimic the initial tyrosine kinase activation and thus possess constitutive tyrosine kinase activity to activate multiple signal transduction pathways in myeloid/lymphoid neoplasms <ref>{{Cite journal|last=Ollendorff|first=Vincent|last2=Guasch|first2=Géraldine|last3=Isnardon|first3=Daniel|last4=Galindo|first4=Rémy|last5=Birnbaum|first5=Daniel|last6=Pébusque|first6=Marie-Josèphe|date=1999|title=Characterization of FIM-FGFR1, the Fusion Product of the Myeloproliferative Disorder-associated t(8;13) Translocation|url=http://www.jbc.org/lookup/doi/10.1074/jbc.274.38.26922|journal=Journal of Biological Chemistry|language=en|volume=274|issue=38|pages=26922–26930|doi=10.1074/jbc.274.38.26922|issn=0021-9258}}</ref><ref>{{Cite journal|last=Jiang|first=Guoqiang|last2=den Hertog|first2=Jeroen|last3=Hunter|first3=Tony|date=2000|title=Receptor-Like Protein Tyrosine Phosphatase α Homodimerizes on the Cell Surface|url=https://mcb.asm.org/content/20/16/5917|journal=Molecular and Cellular Biology|language=en|volume=20|issue=16|pages=5917–5929|doi=10.1128/MCB.20.16.5917-5929.2000|issn=1098-5549|pmc=PMC86069|pmid=10913175}}</ref><ref>{{Cite journal|last=Mason|first=Ivor J.|date=1994|title=The ins and outs of fibroblast growth factors|url=https://linkinghub.elsevier.com/retrieve/pii/0092867494905207|journal=Cell|language=en|volume=78|issue=4|pages=547–552|doi=10.1016/0092-8674(94)90520-7}}</ref><ref>{{Cite journal|last=Smedley|first=Damian|last2=Demiroglu|first2=Asuman|last3=Abdul-Rauf|first3=Munah|last4=Heatht|first4=Carol|last5=Cooper|first5=Colin|last6=Shipley|first6=Janet|last7=Cross|first7=Nicholas C.P.|date=1999|title=ZNF198-FGFR1 Transforms Ba/F3 Cells to Growth Factor Independence and Results in High Level Tyrosine Phosphorylation of STATS 1 and 5|url=https://linkinghub.elsevier.com/retrieve/pii/S1476558699800268|journal=Neoplasia|language=en|volume=1|issue=4|pages=349–355|doi=10.1038/sj.neo.7900035|pmc=PMC1508104|pmid=10935490}}</ref>. | Normal FGFR1 is a transmembrane protein with an extracellular ligand-binding domain, a transmembrane domain and a cytoplasmic tyrosine kinase domain. In inactive state, FGFR1 presents as monomers in cell membrane. Binding with ligands--the fibroblast growth factors (FGFs), induces dimerization and a conformational change that partially activates the enzymatic activity leading to transphosphorylation of the key tyrosine residue, an increase in enzymatic activity, phosphorylation of additional tyrosines and subsequent phosphorylation of downstream target substrates. The signaling pathways include Ras/MAPK, P13K, PLCÁ and STAT proteins. Fusion proteins with FGFR1 mimic the initial tyrosine kinase activation and thus possess constitutive tyrosine kinase activity to activate multiple signal transduction pathways in myeloid/lymphoid neoplasms <ref>{{Cite journal|last=Ollendorff|first=Vincent|last2=Guasch|first2=Géraldine|last3=Isnardon|first3=Daniel|last4=Galindo|first4=Rémy|last5=Birnbaum|first5=Daniel|last6=Pébusque|first6=Marie-Josèphe|date=1999|title=Characterization of FIM-FGFR1, the Fusion Product of the Myeloproliferative Disorder-associated t(8;13) Translocation|url=http://www.jbc.org/lookup/doi/10.1074/jbc.274.38.26922|journal=Journal of Biological Chemistry|language=en|volume=274|issue=38|pages=26922–26930|doi=10.1074/jbc.274.38.26922|issn=0021-9258}}</ref><ref>{{Cite journal|last=Jiang|first=Guoqiang|last2=den Hertog|first2=Jeroen|last3=Hunter|first3=Tony|date=2000|title=Receptor-Like Protein Tyrosine Phosphatase α Homodimerizes on the Cell Surface|url=https://mcb.asm.org/content/20/16/5917|journal=Molecular and Cellular Biology|language=en|volume=20|issue=16|pages=5917–5929|doi=10.1128/MCB.20.16.5917-5929.2000|issn=1098-5549|pmc=PMC86069|pmid=10913175}}</ref><ref>{{Cite journal|last=Mason|first=Ivor J.|date=1994|title=The ins and outs of fibroblast growth factors|url=https://linkinghub.elsevier.com/retrieve/pii/0092867494905207|journal=Cell|language=en|volume=78|issue=4|pages=547–552|doi=10.1016/0092-8674(94)90520-7}}</ref><ref>{{Cite journal|last=Smedley|first=Damian|last2=Demiroglu|first2=Asuman|last3=Abdul-Rauf|first3=Munah|last4=Heatht|first4=Carol|last5=Cooper|first5=Colin|last6=Shipley|first6=Janet|last7=Cross|first7=Nicholas C.P.|date=1999|title=ZNF198-FGFR1 Transforms Ba/F3 Cells to Growth Factor Independence and Results in High Level Tyrosine Phosphorylation of STATS 1 and 5|url=https://linkinghub.elsevier.com/retrieve/pii/S1476558699800268|journal=Neoplasia|language=en|volume=1|issue=4|pages=349–355|doi=10.1038/sj.neo.7900035|pmc=PMC1508104|pmid=10935490}}</ref>. | ||
| Line 510: | Line 421: | ||
<nowiki>*</nowiki>''Citation of this Page'': “Myeloid/lymphoid neoplasm with FGFR1 rearrangement”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:Myeloid/lymphoid_neoplasm_with_FGFR1_rearrangement</nowiki>. | <nowiki>*</nowiki>''Citation of this Page'': “Myeloid/lymphoid neoplasm with FGFR1 rearrangement”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:Myeloid/lymphoid_neoplasm_with_FGFR1_rearrangement</nowiki>. | ||
[[Category:HAEM5]][[Category:DISEASE]][[Category:Diseases M]] | [[Category:HAEM5]] | ||
[[Category:DISEASE]] | |||
[[Category:Diseases M]] | |||