HAEM5:Acute myeloid leukaemia with NUP98 rearrangement: Difference between revisions

[pending revision][pending revision]
No edit summary
Line 61: Line 61:


==Gene Rearrangements==
==Gene Rearrangements==
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span>
{| class="wikitable sortable"
|-
!Driver Gene!!Fusion(s) and Common Partner Genes!!Molecular Pathogenesis!!Typical Chromosomal Alteration(s)
!Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease)
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T
!Established Clinical Significance Per Guidelines - Yes or No (Source)
!Clinical Relevance Details/Other Notes
|-
|<span class="blue-text">EXAMPLE:</span> ''ABL1''||<span class="blue-text">EXAMPLE:</span> ''BCR::ABL1''||<span class="blue-text">EXAMPLE:</span> The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1.||<span class="blue-text">EXAMPLE:</span> t(9;22)(q34;q11.2)
|<span class="blue-text">EXAMPLE:</span> Common (CML)
|<span class="blue-text">EXAMPLE:</span> D, P, T
|<span class="blue-text">EXAMPLE:</span> Yes (WHO, NCCN)
|<span class="blue-text">EXAMPLE:</span>
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference).
|-
|<span class="blue-text">EXAMPLE:</span> ''CIC''
|<span class="blue-text">EXAMPLE:</span> ''CIC::DUX4''
|<span class="blue-text">EXAMPLE:</span> Typically, the last exon of ''CIC'' is fused to ''DUX4''. The fusion breakpoint in ''CIC'' is usually intra-exonic and removes an inhibitory sequence, upregulating ''PEA3'' genes downstream of ''CIC'' including ''ETV1'', ''ETV4'', and ''ETV5''.
|<span class="blue-text">EXAMPLE:</span> t(4;19)(q25;q13)
|<span class="blue-text">EXAMPLE:</span> Common (CIC-rearranged sarcoma)
|<span class="blue-text">EXAMPLE:</span> D
|
|<span class="blue-text">EXAMPLE:</span>
''DUX4'' has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references).
|-
|<span class="blue-text">EXAMPLE:</span> ''ALK''
|<span class="blue-text">EXAMPLE:</span> ''ELM4::ALK''
Other fusion partners include ''KIF5B, NPM1, STRN, TFG, TPM3, CLTC, KLC1''
|<span class="blue-text">EXAMPLE:</span> Fusions result in constitutive activation of the ''ALK'' tyrosine kinase. The most common ''ALK'' fusion is ''EML4::ALK'', with breakpoints in intron 19 of ''ALK''. At the transcript level, a variable (5’) partner gene is fused to 3’ ''ALK'' at exon 20. Rarely, ''ALK'' fusions contain exon 19 due to breakpoints in intron 18.
|<span class="blue-text">EXAMPLE:</span> N/A
|<span class="blue-text">EXAMPLE:</span> Rare (Lung adenocarcinoma)
|<span class="blue-text">EXAMPLE:</span> T
|
|<span class="blue-text">EXAMPLE:</span>
Both balanced and unbalanced forms are observed by FISH (add references).
|-
|<span class="blue-text">EXAMPLE:</span> ''ABL1''
|<span class="blue-text">EXAMPLE:</span> N/A
|<span class="blue-text">EXAMPLE:</span> Intragenic deletion of exons 2–7 in ''EGFR'' removes the ligand-binding domain, resulting in a constitutively active tyrosine kinase with downstream activation of multiple oncogenic pathways.
|<span class="blue-text">EXAMPLE:</span> N/A
|<span class="blue-text">EXAMPLE:</span> Recurrent (IDH-wildtype Glioblastoma)
|<span class="blue-text">EXAMPLE:</span> D, P, T
|
|
|-
|
|
|
|
|
|
|
|
|}


Acute myeloid leukaemia (AML) with NUP98 rearrangement is characterized by chromosomal translocations involving NUP98 (nucleoporin 98 kDa) on chromosome 11p15.4 and various partner genes. (Reference WHO book). There are over 40 fusion partners which have been reported to date. NUP98 fusions can be categorized into three broad parts. The first category includes NUP98 fusions with transcription factors as partners, which can change the expression of target genes through DNA binding domains. The second category is NUP98 fusions with epigenetic modifiers that modify chromatin to change target gene expression. The third category of NUP98 fusions has neither the DNA binding nor chromatin remodeling domain.<ref name=":0">{{Cite journal|last=Mohanty|first=Sagarajit|date=2023-09|title=NUP98 Rearrangements in AML: Molecular Mechanisms and Clinical Implications|url=https://www.mdpi.com/2673-7523/3/3/11|journal=Onco|language=en|volume=3|issue=3|pages=147–164|doi=10.3390/onco3030011|issn=2673-7523}}</ref>  
Acute myeloid leukaemia (AML) with NUP98 rearrangement is characterized by chromosomal translocations involving NUP98 (nucleoporin 98 kDa) on chromosome 11p15.4 and various partner genes. (Reference WHO book). There are over 40 fusion partners which have been reported to date. NUP98 fusions can be categorized into three broad parts. The first category includes NUP98 fusions with transcription factors as partners, which can change the expression of target genes through DNA binding domains. The second category is NUP98 fusions with epigenetic modifiers that modify chromatin to change target gene expression. The third category of NUP98 fusions has neither the DNA binding nor chromatin remodeling domain.<ref name=":0">{{Cite journal|last=Mohanty|first=Sagarajit|date=2023-09|title=NUP98 Rearrangements in AML: Molecular Mechanisms and Clinical Implications|url=https://www.mdpi.com/2673-7523/3/3/11|journal=Onco|language=en|volume=3|issue=3|pages=147–164|doi=10.3390/onco3030011|issn=2673-7523}}</ref>  
Line 112: Line 171:
|
|
|}
|}
==Individual Region Genomic Gain/Loss/LOH==
==Individual Region Genomic Gain/Loss/LOH==