<blockquote class='blockedit'>{{Box-round|title=HAEM5 Conversion Notes|This page was converted to the new template on 2023-11-30. The original page can be found at [[HAEM4:B-Lymphoblastic Leukemia/Lymphoma, BCR-ABL1-Like]].
<blockquote class='blockedit'>{{Box-round|title=HAEM5 Conversion Notes|This page was converted to the new template on 2023-12-04. The original page can be found at [[HAEM4:B-Lymphoblastic Leukemia/Lymphoma, BCR-ABL1-Like]].
In 2009, a high-risk subgroup of B-ALL was identified in children, adolescents, and young adults[1][2][3]. The genetic expression is similar to that of BCR-ABL1-positive cases, but without t(9;22)(q34.1;q11.2). Instead, BCR-ABL-1-like B-ALL is a genetically heterogenous disease, often with alterations activating cytokine receptors and tyrosine kinases. Several genetic expression profiles were initially utilized to recognize cases[1][2], however, different profiles did not always identify the same patients[4]. Although emerging data advocates the therapeutic use of tyrosine kinase or JAK inhibitors in this disease process, BCR-ABL-like B-ALL is often associated with very high rates of relapse and poor overall survival; thus proper diagnosis is essential[5].
Synonyms / Terminology
Ph-like B-lymphoblastic leukemia/lymphoma
Epidemiology / Prevalence
Ph-like ALL comprises up to 15% of childhood B-ALL, and 20 to 25% in adolescents and young adults[6].
The incidence in adult patients is controversial—from 13-17% to up to 33% in some reports[7][8][9].
Higher rates of disease are observed in Hispanic and Native-American populations, and among children with Down syndrome[10].
Clinical Features
Put your text here and fill in the table (Instruction: Can include references in the table)
Signs and Symptoms
EXAMPLE Asymptomatic (incidental finding on complete blood counts)
EXAMPLE B-symptoms (weight loss, fever, night sweats)
The content below was from the old template. Please incorporate above.
The presenting symptoms are similar to those of other ALL patients, with the exception of potentially higher white blood cell counts[11].
Sites of Involvement
Bone marrow
Morphologic Features
There are no morphological or cytochemical features that aid in the diagnosis. Blasts range from small to large and chromatin varying from immature to more mature, corresponding to French-American-British classification L1 or L2 subtype[12].
(Konoplev et al. Am J Clin Pathol. 2017.)
Immunophenotype
Put your text here and fill in the table (Instruction: Can include references in the table)
The content below was from the old template. Please incorporate above.
Blasts are typically CD19, TdT, and CD10-positive. By flow cytometry, a subset of cases with CRLF2 translocations show very high levels of surface protein expression[11].
Chromosomal Rearrangements (Gene Fusions)
Put your text here and fill in the table
Chromosomal Rearrangement
Genes in Fusion (5’ or 3’ Segments)
Pathogenic Derivative
Prevalence
Diagnostic Significance (Yes, No or Unknown)
Prognostic Significance (Yes, No or Unknown)
Therapeutic Significance (Yes, No or Unknown)
Notes
EXAMPLE t(9;22)(q34;q11.2)
EXAMPLE 3'ABL1 / 5'BCR
EXAMPLE der(22)
EXAMPLE 20% (COSMIC)
EXAMPLE 30% (add reference)
Yes
No
Yes
EXAMPLE
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference).
The content below was from the old template. Please incorporate above.
Tyrosine kinase-type translocations are common and involve ABL1 and other kinases (such as ABL2, EPOR, JAK2, PDGFRB, and CSF1R); more than 30 gene partners have been described. Frequently reported examples include IGH–EPOR of the t(14;19)(q32;p13)/ins(14;19)(q32;p13), EBF1–PDGFRB of the del(5)(q32q33.3), NUP214–ABL1 of the t(9;9)(q34;q34)/del(9)(q34q34), and ETV6–ABL1 of the t(9;12)(q34;p13). Other notable fusions are BCR–JAK2, PAX5–JAK2, STRN3–JAK2, RANBP2–ABL1, RCSD1–ABL1, and MEF2D–CSF1R[13].
editv4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).
Please incorporate this section into the relevant tables found in:
Chromosomal Rearrangements (Gene Fusions)
Individual Region Genomic Gain/Loss/LOH
Characteristic Chromosomal Patterns
Gene Mutations (SNV/INDEL)
Diagnosis: Definitive diagnosis is based on two major gene expression signatures (DCOG/Erasmus MC and COG/St. Jude).
DCOG/Erasmus MC incorporates hierarchal clustering of microarrays using a 110-gene probe set; this genetic signature frequently detected deletions in IKZF1, dic(9;20), and iAMP21 in BCR-ABL1-like B-ALL[1].
COG/St. Jude employs predictive analysis of microarrays using a 257-gene probe set; this genetic signature demonstrated primarily activating kinase or cytokine receptor signaling alterations, in addition to IKZF1 deletions[2].
Prognosis: In both pediatric and adult populations, BCR-ABL1-like B-ALL is associated with high rates of relapse and poor prognosis.
The median 5-year overall survival rates for children with BCR-ABL1-like B-ALL, adolescents, and young adults was 72.8%, 65.8%, and 25.8%, respectively[6].
Median 5-year-overall survival in adults was 22%, versus 64% in comparable patients with non-BCR-ABL1, non-BCR-ABL1-like, and non-MLL translocation B-ALL[8].
Therapeutic Implications: Due to the aggressive nature of the disease, patients are often treated with high-intensity chemotherapy regimens, such as hyper-CVAD or an augmented Berlin-Frankfurt-Münster regimen[9].
However, given the high incidence of fusions involving JAK2, ABL1, ABL2, and other tyrosine kinases, tyrosine kinase inhibitors and JAK inhibitors are now being trialed clinically[6][14][15].
Individual Region Genomic Gain / Loss / LOH
Put your text here and fill in the table (Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable.)
Chr #
Gain / Loss / Amp / LOH
Minimal Region Genomic Coordinates [Genome Build]
Minimal Region Cytoband
Diagnostic Significance (Yes, No or Unknown)
Prognostic Significance (Yes, No or Unknown)
Therapeutic Significance (Yes, No or Unknown)
Notes
EXAMPLE
7
EXAMPLE Loss
EXAMPLE
chr7:1- 159,335,973 [hg38]
EXAMPLE
chr7
Yes
Yes
No
EXAMPLE
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference).
EXAMPLE
8
EXAMPLE Gain
EXAMPLE
chr8:1-145,138,636 [hg38]
EXAMPLE
chr8
No
No
No
EXAMPLE
Common recurrent secondary finding for t(8;21) (add reference).
The content below was from the old template. Please incorporate above.
Monoallelic (often partial) deletion of the IKAROS transcription factor, encoded by IKZF1, is one of the most frequently observed genetic abnormalities in BCR-ABL1-like B-ALL, although this finding is not specific and not included in the definition[4].
Characteristic Chromosomal Patterns
Put your text here (EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis)
Chromosomal Pattern
Diagnostic Significance (Yes, No or Unknown)
Prognostic Significance (Yes, No or Unknown)
Therapeutic Significance (Yes, No or Unknown)
Notes
EXAMPLE
Co-deletion of 1p and 18q
Yes
No
No
EXAMPLE:
See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).
The content below was from the old template. Please incorporate above.
Approximately half of cases demonstrate rearrangements resulting in overexpression of CRLF2[12]. These rearrangements are the result of either translocation of immunoglobin heavy chain enhance locus into CRLF2 (IGH-CRLF2—more commonly seen in adults) or through a cryptic deletion on chromosome X/Y involving the PAR1 psuedoautosomal region, resulting in fusion of CRLF2 to P2RY8 (more commonly seen in children). Very rare alternative translocations involving CRLF2 have also been observed.
[Abnormal FISH results in interphase nuclei from a bone marrow sample using the CRLF2 dual-color, break-apart (Cytocell) and IGH dual-color, break-apart probes, reflective of IGH-CRLF2 fusion]
[Concurrent abnormal karyotype with trisomy 21 and a translocation involving chromosomes X, 14, and 2 in 9 of 13 cells available for analysis. Metaphase FISH with the IGH break-apart probe (Vysis) confirms the presence of 5’ IGH (green signal) on the abnormal chromosome Xp33.1 (CRLF2 locus), highly suggestive on an IGH-CRLF2 fusion rearrangement.
Put your text here and fill in the table (Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity.)
The content below was from the old template. Please incorporate above.
In addition to gene translocations, gain-of-function mutations in CRLF2 itself or in its partner gene, IL7RA, have been seen[16]. Alternative alterations activating kinase signaling occur, including activating mutations of FLT3, as well as focal deletions of SH2B3 (also known as LNK)[17].
Herold et al. in 2017 reported a wide variety of molecular alterations in BCR-ABL1-like B-ALL, which was shown to have statistically significant associations with alterations of IKZF1, CRLF2, JAK2, BTG1, and high CRLF2 expression[8].
Epigenomic Alterations
Not applicable
Genes and Main Pathways Involved
Put your text here and fill in the table (Instructions: Can include references in the table.)
The content below was from the old template. Please incorporate above.
IKAROS transcription factor: Deletion of IKZF1 results in activation of EBF1, MSH2, and MCL1, leading to B-cell leukemogenesis[18].
CRLF2 overexpression: CRFL2 and its cofactor IL7RA form a receptor for thymic stromal-derived lymphopoietin that activates the JAK2-signal transducer and upregulates the transcription 5 pathway[16].
Dysregulation of several tyrosine kinase signaling pathways (involving ABL1, ABL2, PDGFRB, CSF1, etc.) results in B-cell progenitor proliferation.
Genetic Diagnostic Testing Methods
Flow cytometry for CRLF2 has been shown in some studies to be 100% concordant with FISH results[12].
Next-generation sequencing is helpful for detecting copy number changes, single nucleotide variants, and gene fusions involving CRLF2, ABL1, ABL2, JAK2, etc.
Gene expression profile algorithms, incorporating prediction analysis or hierarchical clustering of microarrays, provide the definitive diagnosis of BCR-ABL1-like B-ALL.
Familial Forms
Families with certain inherited variants of GATA3 (often seen in Native-American populations) are at increased risk of BCR-ABL1-like B-ALL[19].
(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking on where you want to insert the reference, selecting the “Cite” icon at the top of the page, and using the “Automatic” tab option to search such as by PMID to select the reference to insert. The reference list in this section will be automatically generated and sorted.If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference.)
↑ 11.011.1Borowitz MJ, et al., (2017). B-lymphoblastic leukaemia/lymphoma with recurrent genetic abnormalities, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. IARC Press: Lyon, France, p208.
↑Heim S & Mitelman F. Cancer Cytogenetics: Chromosomal and Molecular Genetic Aberrations of Tumor Cells. John Wiley & Sons, Incorporated: Chichester, United Kingdom. 2015.
↑ 16.016.1Quesada A, Reynolds M, Jorgensen JL, et al. Cytokine receptor-like factor 2 (CRLF2) expression in precursor B-lymphoblastic leukemia. International Clinical Cytometry Society e-Newsletter. 2014;5(1).
↑Tosi S & Reid AG. The Genetic Basis of Haematological Cancers. John Wiley & Sons, Incorporated: Chichester, United Kingdom: 2016.
*Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage). Additional global feedback or concerns are also welcome.
*Citation of this Page: “B-lymphoblastic leukaemia/lymphoma with BCR::ABL1-like features”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 12/4/2023, https://ccga.io/index.php/HAEM5:B-lymphoblastic_leukaemia/lymphoma_with_BCR::ABL1-like_features.