FISH is not required for diagnosis in routine practice <ref name=":27" /><ref name=":28" />.
{| class="wikitable sortable"
{| class="wikitable sortable"
Line 167:
Line 171:
|No
|No
|Yes
|Yes
|ALK inhibition ([https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-crizotinib-children-and-young-adults-relapsed-or-refractory-systemic-anaplastic-large#:~:text=Approvals%20and%20Databases-,FDA%20approves%20crizotinib%20for%20children%20and%20young%20adults%20with%20relapsed,systemic%20anaplastic%20large%20cell%20lymphoma&text=On%20January%2014%2C%202021%2C%20the,(Xalkori%2C%20Pfizer%20Inc.) crizotinib]) can be an effective 2nd-line therapeutic strategy as ALK is essential for the proliferation and survival of ALK+ ALCL cells<ref name=":21" /><ref name=":2" /><ref name=":22" />
|Approximately 80% of cases show a cytogenetic translocation t(2;5) (NPM1-ALK, t(2;5)(p23;q35)) which fuses the ''ALK'' gene to the nucleophosmine (NPM) gene at 5q35, resulting in the overexpression and constitutive activation of a chimeric ALK fusion protein, which plays an important role in ALK-mediated oncogenesis.
'''<u>Of note, identifying the ''ALK'' fusion partner is not considered necessary in routine clinical practice.</u>'''
Detecting minimal residual disease by PCR for ''[[NPM1-ALK]]'' (not readily commercially available) in bone marrow and peripheral blood during treatment could identify patients at risk of relapse<ref name=":29" />
ALK inhibition ([https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-crizotinib-children-and-young-adults-relapsed-or-refractory-systemic-anaplastic-large#:~:text=Approvals%20and%20Databases-,FDA%20approves%20crizotinib%20for%20children%20and%20young%20adults%20with%20relapsed,systemic%20anaplastic%20large%20cell%20lymphoma&text=On%20January%2014%2C%202021%2C%20the,(Xalkori%2C%20Pfizer%20Inc.) crizotinib]) can be an effective 2nd-line therapeutic strategy as ALK is essential for the proliferation and survival of ALK+ ALCL cells<ref name=":21" /><ref name=":2" /><ref name=":22" />
*Drug resistance may develop due to:
*Drug resistance may develop due to:
Line 262:
Line 275:
*Approximately 80% of cases show a cytogenetic translocation t(2;5) (NPM1-ALK, t(2;5)(p23;q35)) which fuses the ''ALK'' gene to the nucleophosmine (NPM) gene at 5q35, resulting in the overexpression and constitutive activation of a chimeric ALK fusion protein, which plays an important role in ALK-mediated oncogenesis.<ref name=":20">{{Cite journal|last=Morris|first=S. W.|last2=Kirstein|first2=M. N.|last3=Valentine|first3=M. B.|last4=Dittmer|first4=K. G.|last5=Shapiro|first5=D. N.|last6=Saltman|first6=D. L.|last7=Look|first7=A. T.|date=1994-03-04|title=Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/8122112/|journal=Science (New York, N.Y.)|volume=263|issue=5151|pages=1281–1284|doi=10.1126/science.8122112|issn=0036-8075|pmid=8122112}}</ref>
*Approximately 80% of cases show a cytogenetic translocation t(2;5) (NPM1-ALK, t(2;5)(p23;q35)) which fuses the ''ALK'' gene to the nucleophosmine (NPM) gene at 5q35, resulting in the overexpression and constitutive activation of a chimeric ALK fusion protein, which plays an important role in ALK-mediated oncogenesis.<ref name=":20">{{Cite journal|last=Morris|first=S. W.|last2=Kirstein|first2=M. N.|last3=Valentine|first3=M. B.|last4=Dittmer|first4=K. G.|last5=Shapiro|first5=D. N.|last6=Saltman|first6=D. L.|last7=Look|first7=A. T.|date=1994-03-04|title=Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/8122112/|journal=Science (New York, N.Y.)|volume=263|issue=5151|pages=1281–1284|doi=10.1126/science.8122112|issn=0036-8075|pmid=8122112}}</ref>
**
**
*''ALK'' translocations may be seen in multiple malignancies including epithelial malignancies<ref>{{Cite journal|last=Holla|first=Vijaykumar R.|last2=Elamin|first2=Yasir Y.|last3=Bailey|first3=Ann Marie|last4=Johnson|first4=Amber M.|last5=Litzenburger|first5=Beate C.|last6=Khotskaya|first6=Yekaterina B.|last7=Sanchez|first7=Nora S.|last8=Zeng|first8=Jia|last9=Shufean|first9=Md Abu|date=2017-1|title=ALK: a tyrosine kinase target for cancer therapy|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5171696/|journal=Cold Spring Harbor Molecular Case Studies|volume=3|issue=1|pages=a001115|doi=10.1101/mcs.a001115|issn=2373-2873|pmc=5171696|pmid=28050598}}</ref><ref>{{Cite journal|last=Amatu|first=Alessio|last2=Somaschini|first2=Alessio|last3=Cerea|first3=Giulio|last4=Bosotti|first4=Roberta|last5=Valtorta|first5=Emanuele|last6=Buonandi|first6=Pasquale|last7=Marrapese|first7=Giovanna|last8=Veronese|first8=Silvio|last9=Luo|first9=David|date=2015-12-22|title=Novel CAD-ALK gene rearrangement is drugable by entrectinib in colorectal cancer|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701996/|journal=British Journal of Cancer|volume=113|issue=12|pages=1730–1734|doi=10.1038/bjc.2015.401|issn=0007-0920|pmc=4701996|pmid=26633560}}</ref><ref>{{Cite journal|last=Camidge|first=D. Ross|last2=Kono|first2=Scott A.|last3=Lu|first3=Xian|last4=Okuyama|first4=Sonia|last5=Barón|first5=Anna E.|last6=Oton|first6=Ana B.|last7=Davies|first7=Angela M.|last8=Varella-Garcia|first8=Marileila|last9=Franklin|first9=Wilbur|date=2011-04|title=Anaplastic lymphoma kinase gene rearrangements in non-small cell lung cancer are associated with prolonged progression-free survival on pemetrexed|url=https://pubmed.ncbi.nlm.nih.gov/21336183/|journal=Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer|volume=6|issue=4|pages=774–780|doi=10.1097/JTO.0b013e31820cf053|issn=1556-1380|pmc=3626562|pmid=21336183}}</ref><ref>{{Cite journal|last=Choi|first=Young Lim|last2=Takeuchi|first2=Kengo|last3=Soda|first3=Manabu|last4=Inamura|first4=Kentaro|last5=Togashi|first5=Yuki|last6=Hatano|first6=Satoko|last7=Enomoto|first7=Munehiro|last8=Hamada|first8=Toru|last9=Haruta|first9=Hidenori|date=2008-07-01|title=Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer|url=https://pubmed.ncbi.nlm.nih.gov/18593892/|journal=Cancer Research|volume=68|issue=13|pages=4971–4976|doi=10.1158/0008-5472.CAN-07-6158|issn=1538-7445|pmid=18593892}}</ref><ref>{{Cite journal|last=Kelly|first=Lindsey M.|last2=Barila|first2=Guillermo|last3=Liu|first3=Pengyuan|last4=Evdokimova|first4=Viktoria N.|last5=Trivedi|first5=Sumita|last6=Panebianco|first6=Federica|last7=Gandhi|first7=Manoj|last8=Carty|first8=Sally E.|last9=Hodak|first9=Steven P.|date=2014-03-18|title=Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964116/|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=111|issue=11|pages=4233–4238|doi=10.1073/pnas.1321937111|issn=0027-8424|pmc=3964116|pmid=24613930}}</ref><ref>{{Cite journal|last=Ambrosini|first=Margherita|last2=Del Re|first2=Marzia|last3=Manca|first3=Paolo|last4=Hendifar|first4=Andrew|last5=Drilon|first5=Alexander|last6=Harada|first6=Guilherme|last7=Ree|first7=Anne Hansen|last8=Klempner|first8=Samuel|last9=Mælandsmo|first9=Gunhild Mari|date=2022-04|title=ALK Inhibitors in Patients With ALK Fusion-Positive GI Cancers: An International Data Set and a Molecular Case Series|url=https://pubmed.ncbi.nlm.nih.gov/35476549/|journal=JCO precision oncology|volume=6|pages=e2200015|doi=10.1200/PO.22.00015|issn=2473-4284|pmid=35476549}}</ref>, inflammatory myofibroblastic tumor<ref>{{Cite journal|last=Bridge|first=Julia A.|last2=Kanamori|first2=Masahiko|last3=Ma|first3=Zhigui|last4=Pickering|first4=Diane|last5=Hill|first5=D. Ashley|last6=Lydiatt|first6=William|last7=Lui|first7=Man Yee|last8=Colleoni|first8=Gisele W. B.|last9=Antonescu|first9=Cristina R.|date=2001-8|title=Fusion of the ALK Gene to the Clathrin Heavy Chain Gene, CLTC, in Inflammatory Myofibroblastic Tumor|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1850566/|journal=The American Journal of Pathology|volume=159|issue=2|pages=411–415|issn=0002-9440|pmc=1850566|pmid=11485898}}</ref><ref>{{Cite journal|last=Lawrence|first=B.|last2=Perez-Atayde|first2=A.|last3=Hibbard|first3=M. K.|last4=Rubin|first4=B. P.|last5=Dal Cin|first5=P.|last6=Pinkus|first6=J. L.|last7=Pinkus|first7=G. S.|last8=Xiao|first8=S.|last9=Yi|first9=E. S.|date=2000-08|title=TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors|url=https://pubmed.ncbi.nlm.nih.gov/10934142/|journal=The American Journal of Pathology|volume=157|issue=2|pages=377–384|doi=10.1016/S0002-9440(10)64550-6|issn=0002-9440|pmc=1850130|pmid=10934142}}</ref><ref>{{Cite journal|last=Ma|first=Zhigui|last2=Hill|first2=D. Ashley|last3=Collins|first3=Margaret H.|last4=Morris|first4=Stephan W.|last5=Sumegi|first5=Janos|last6=Zhou|first6=Ming|last7=Zuppan|first7=Craig|last8=Bridge|first8=Julia A.|date=2003-05|title=Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor|url=https://pubmed.ncbi.nlm.nih.gov/12661011/|journal=Genes, Chromosomes & Cancer|volume=37|issue=1|pages=98–105|doi=10.1002/gcc.10177|issn=1045-2257|pmid=12661011}}</ref>, non-Hodgkin's lymphoma<ref>{{Cite journal|last=Pan|first=Zenggang|last2=Hu|first2=Shimin|last3=Li|first3=Min|last4=Zhou|first4=Yi|last5=Kim|first5=Young S.|last6=Reddy|first6=Vishnu|last7=Sanmann|first7=Jennifer N.|last8=Smith|first8=Lynette M.|last9=Chen|first9=Mingyi|date=2017-01|title=ALK-positive Large B-cell Lymphoma: A Clinicopathologic Study of 26 Cases With Review of Additional 108 Cases in the Literature|url=https://pubmed.ncbi.nlm.nih.gov/27740969/|journal=The American Journal of Surgical Pathology|volume=41|issue=1|pages=25–38|doi=10.1097/PAS.0000000000000753|issn=1532-0979|pmid=27740969}}</ref><ref>{{Cite journal|last=Laurent|first=Camille|last2=Do|first2=Catherine|last3=Gascoyne|first3=Randy D.|last4=Lamant|first4=Laurence|last5=Ysebaert|first5=Loïc|last6=Laurent|first6=Guy|last7=Delsol|first7=Georges|last8=Brousset|first8=Pierre|date=2009-09-01|title=Anaplastic lymphoma kinase-positive diffuse large B-cell lymphoma: a rare clinicopathologic entity with poor prognosis|url=https://pubmed.ncbi.nlm.nih.gov/19636007/|journal=Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology|volume=27|issue=25|pages=4211–4216|doi=10.1200/JCO.2008.21.5020|issn=1527-7755|pmid=19636007}}</ref><ref>{{Cite journal|last=Sakamoto|first=Kana|last2=Nakasone|first2=Hideki|last3=Togashi|first3=Yuki|last4=Sakata|first4=Seiji|last5=Tsuyama|first5=Naoko|last6=Baba|first6=Satoko|last7=Dobashi|first7=Akito|last8=Asaka|first8=Reimi|last9=Tsai|first9=Chien-Chen|date=2016-04|title=ALK-positive large B-cell lymphoma: identification of EML4-ALK and a review of the literature focusing on the ALK immunohistochemical staining pattern|url=https://pubmed.ncbi.nlm.nih.gov/26781614/|journal=International Journal of Hematology|volume=103|issue=4|pages=399–408|doi=10.1007/s12185-016-1934-1|issn=1865-3774|pmid=26781614}}</ref>, and ALK+ histiocytosis <ref>{{Cite journal|last=Takeyasu|first=Yuki|last2=Okuma|first2=Hitomi S.|last3=Kojima|first3=Yuki|last4=Nishikawa|first4=Tadaaki|last5=Tanioka|first5=Maki|last6=Sudo|first6=Kazuki|last7=Shimoi|first7=Tatsunori|last8=Noguchi|first8=Emi|last9=Arakawa|first9=Ayumu|date=2021|title=Impact of ALK Inhibitors in Patients With ALK-Rearranged Nonlung Solid Tumors|url=https://pubmed.ncbi.nlm.nih.gov/34036223/|journal=JCO precision oncology|volume=5|pages=PO.20.00383|doi=10.1200/PO.20.00383|issn=2473-4284|pmc=8140781|pmid=34036223}}</ref><ref>{{Cite journal|last=Chang|first=Kenneth Tou En|last2=Tay|first2=Amos Zhi En|last3=Kuick|first3=Chik Hong|last4=Chen|first4=Huiyi|last5=Algar|first5=Elizabeth|last6=Taubenheim|first6=Nadine|last7=Campbell|first7=Janine|last8=Mechinaud|first8=Francoise|last9=Campbell|first9=Martin|date=2019-05|title=ALK-positive histiocytosis: an expanded clinicopathologic spectrum and frequent presence of KIF5B-ALK fusion|url=https://pubmed.ncbi.nlm.nih.gov/30573850/|journal=Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc|volume=32|issue=5|pages=598–608|doi=10.1038/s41379-018-0168-6|issn=1530-0285|pmid=30573850}}</ref><ref>{{Cite journal|last=Chan|first=John K. C.|last2=Lamant|first2=Laurence|last3=Algar|first3=Elizabeth|last4=Delsol|first4=Georges|last5=Tsang|first5=William Y. W.|last6=Lee|first6=King C.|last7=Tiedemann|first7=Karin|last8=Chow|first8=Chung W.|date=2008-10-01|title=ALK+ histiocytosis: a novel type of systemic histiocytic proliferative disorder of early infancy|url=https://pubmed.ncbi.nlm.nih.gov/18660380/|journal=Blood|volume=112|issue=7|pages=2965–2968|doi=10.1182/blood-2008-03-147017|issn=1528-0020|pmid=18660380}}</ref>.
*'''''ALK translocations may be seen in multiple malignancies including epithelial malignancies<ref>{{Cite journal|last=Holla|first=Vijaykumar R.|last2=Elamin|first2=Yasir Y.|last3=Bailey|first3=Ann Marie|last4=Johnson|first4=Amber M.|last5=Litzenburger|first5=Beate C.|last6=Khotskaya|first6=Yekaterina B.|last7=Sanchez|first7=Nora S.|last8=Zeng|first8=Jia|last9=Shufean|first9=Md Abu|date=2017-1|title=ALK: a tyrosine kinase target for cancer therapy|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5171696/|journal=Cold Spring Harbor Molecular Case Studies|volume=3|issue=1|pages=a001115|doi=10.1101/mcs.a001115|issn=2373-2873|pmc=5171696|pmid=28050598}}</ref><ref>{{Cite journal|last=Amatu|first=Alessio|last2=Somaschini|first2=Alessio|last3=Cerea|first3=Giulio|last4=Bosotti|first4=Roberta|last5=Valtorta|first5=Emanuele|last6=Buonandi|first6=Pasquale|last7=Marrapese|first7=Giovanna|last8=Veronese|first8=Silvio|last9=Luo|first9=David|date=2015-12-22|title=Novel CAD-ALK gene rearrangement is drugable by entrectinib in colorectal cancer|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701996/|journal=British Journal of Cancer|volume=113|issue=12|pages=1730–1734|doi=10.1038/bjc.2015.401|issn=0007-0920|pmc=4701996|pmid=26633560}}</ref><ref>{{Cite journal|last=Camidge|first=D. Ross|last2=Kono|first2=Scott A.|last3=Lu|first3=Xian|last4=Okuyama|first4=Sonia|last5=Barón|first5=Anna E.|last6=Oton|first6=Ana B.|last7=Davies|first7=Angela M.|last8=Varella-Garcia|first8=Marileila|last9=Franklin|first9=Wilbur|date=2011-04|title=Anaplastic lymphoma kinase gene rearrangements in non-small cell lung cancer are associated with prolonged progression-free survival on pemetrexed|url=https://pubmed.ncbi.nlm.nih.gov/21336183/|journal=Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer|volume=6|issue=4|pages=774–780|doi=10.1097/JTO.0b013e31820cf053|issn=1556-1380|pmc=3626562|pmid=21336183}}</ref><ref>{{Cite journal|last=Choi|first=Young Lim|last2=Takeuchi|first2=Kengo|last3=Soda|first3=Manabu|last4=Inamura|first4=Kentaro|last5=Togashi|first5=Yuki|last6=Hatano|first6=Satoko|last7=Enomoto|first7=Munehiro|last8=Hamada|first8=Toru|last9=Haruta|first9=Hidenori|date=2008-07-01|title=Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer|url=https://pubmed.ncbi.nlm.nih.gov/18593892/|journal=Cancer Research|volume=68|issue=13|pages=4971–4976|doi=10.1158/0008-5472.CAN-07-6158|issn=1538-7445|pmid=18593892}}</ref><ref>{{Cite journal|last=Kelly|first=Lindsey M.|last2=Barila|first2=Guillermo|last3=Liu|first3=Pengyuan|last4=Evdokimova|first4=Viktoria N.|last5=Trivedi|first5=Sumita|last6=Panebianco|first6=Federica|last7=Gandhi|first7=Manoj|last8=Carty|first8=Sally E.|last9=Hodak|first9=Steven P.|date=2014-03-18|title=Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964116/|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=111|issue=11|pages=4233–4238|doi=10.1073/pnas.1321937111|issn=0027-8424|pmc=3964116|pmid=24613930}}</ref><ref>{{Cite journal|last=Ambrosini|first=Margherita|last2=Del Re|first2=Marzia|last3=Manca|first3=Paolo|last4=Hendifar|first4=Andrew|last5=Drilon|first5=Alexander|last6=Harada|first6=Guilherme|last7=Ree|first7=Anne Hansen|last8=Klempner|first8=Samuel|last9=Mælandsmo|first9=Gunhild Mari|date=2022-04|title=ALK Inhibitors in Patients With ALK Fusion-Positive GI Cancers: An International Data Set and a Molecular Case Series|url=https://pubmed.ncbi.nlm.nih.gov/35476549/|journal=JCO precision oncology|volume=6|pages=e2200015|doi=10.1200/PO.22.00015|issn=2473-4284|pmid=35476549}}</ref>, inflammatory myofibroblastic tumor<ref>{{Cite journal|last=Bridge|first=Julia A.|last2=Kanamori|first2=Masahiko|last3=Ma|first3=Zhigui|last4=Pickering|first4=Diane|last5=Hill|first5=D. Ashley|last6=Lydiatt|first6=William|last7=Lui|first7=Man Yee|last8=Colleoni|first8=Gisele W. B.|last9=Antonescu|first9=Cristina R.|date=2001-8|title=Fusion of the ALK Gene to the Clathrin Heavy Chain Gene, CLTC, in Inflammatory Myofibroblastic Tumor|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1850566/|journal=The American Journal of Pathology|volume=159|issue=2|pages=411–415|issn=0002-9440|pmc=1850566|pmid=11485898}}</ref><ref>{{Cite journal|last=Lawrence|first=B.|last2=Perez-Atayde|first2=A.|last3=Hibbard|first3=M. K.|last4=Rubin|first4=B. P.|last5=Dal Cin|first5=P.|last6=Pinkus|first6=J. L.|last7=Pinkus|first7=G. S.|last8=Xiao|first8=S.|last9=Yi|first9=E. S.|date=2000-08|title=TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors|url=https://pubmed.ncbi.nlm.nih.gov/10934142/|journal=The American Journal of Pathology|volume=157|issue=2|pages=377–384|doi=10.1016/S0002-9440(10)64550-6|issn=0002-9440|pmc=1850130|pmid=10934142}}</ref><ref>{{Cite journal|last=Ma|first=Zhigui|last2=Hill|first2=D. Ashley|last3=Collins|first3=Margaret H.|last4=Morris|first4=Stephan W.|last5=Sumegi|first5=Janos|last6=Zhou|first6=Ming|last7=Zuppan|first7=Craig|last8=Bridge|first8=Julia A.|date=2003-05|title=Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor|url=https://pubmed.ncbi.nlm.nih.gov/12661011/|journal=Genes, Chromosomes & Cancer|volume=37|issue=1|pages=98–105|doi=10.1002/gcc.10177|issn=1045-2257|pmid=12661011}}</ref>, non-Hodgkin's lymphoma<ref>{{Cite journal|last=Pan|first=Zenggang|last2=Hu|first2=Shimin|last3=Li|first3=Min|last4=Zhou|first4=Yi|last5=Kim|first5=Young S.|last6=Reddy|first6=Vishnu|last7=Sanmann|first7=Jennifer N.|last8=Smith|first8=Lynette M.|last9=Chen|first9=Mingyi|date=2017-01|title=ALK-positive Large B-cell Lymphoma: A Clinicopathologic Study of 26 Cases With Review of Additional 108 Cases in the Literature|url=https://pubmed.ncbi.nlm.nih.gov/27740969/|journal=The American Journal of Surgical Pathology|volume=41|issue=1|pages=25–38|doi=10.1097/PAS.0000000000000753|issn=1532-0979|pmid=27740969}}</ref><ref>{{Cite journal|last=Laurent|first=Camille|last2=Do|first2=Catherine|last3=Gascoyne|first3=Randy D.|last4=Lamant|first4=Laurence|last5=Ysebaert|first5=Loïc|last6=Laurent|first6=Guy|last7=Delsol|first7=Georges|last8=Brousset|first8=Pierre|date=2009-09-01|title=Anaplastic lymphoma kinase-positive diffuse large B-cell lymphoma: a rare clinicopathologic entity with poor prognosis|url=https://pubmed.ncbi.nlm.nih.gov/19636007/|journal=Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology|volume=27|issue=25|pages=4211–4216|doi=10.1200/JCO.2008.21.5020|issn=1527-7755|pmid=19636007}}</ref><ref>{{Cite journal|last=Sakamoto|first=Kana|last2=Nakasone|first2=Hideki|last3=Togashi|first3=Yuki|last4=Sakata|first4=Seiji|last5=Tsuyama|first5=Naoko|last6=Baba|first6=Satoko|last7=Dobashi|first7=Akito|last8=Asaka|first8=Reimi|last9=Tsai|first9=Chien-Chen|date=2016-04|title=ALK-positive large B-cell lymphoma: identification of EML4-ALK and a review of the literature focusing on the ALK immunohistochemical staining pattern|url=https://pubmed.ncbi.nlm.nih.gov/26781614/|journal=International Journal of Hematology|volume=103|issue=4|pages=399–408|doi=10.1007/s12185-016-1934-1|issn=1865-3774|pmid=26781614}}</ref>, and ALK+ histiocytosis''''' ''<ref>{{Cite journal|last=Takeyasu|first=Yuki|last2=Okuma|first2=Hitomi S.|last3=Kojima|first3=Yuki|last4=Nishikawa|first4=Tadaaki|last5=Tanioka|first5=Maki|last6=Sudo|first6=Kazuki|last7=Shimoi|first7=Tatsunori|last8=Noguchi|first8=Emi|last9=Arakawa|first9=Ayumu|date=2021|title=Impact of ALK Inhibitors in Patients With ALK-Rearranged Nonlung Solid Tumors|url=https://pubmed.ncbi.nlm.nih.gov/34036223/|journal=JCO precision oncology|volume=5|pages=PO.20.00383|doi=10.1200/PO.20.00383|issn=2473-4284|pmc=8140781|pmid=34036223}}</ref><ref>{{Cite journal|last=Chang|first=Kenneth Tou En|last2=Tay|first2=Amos Zhi En|last3=Kuick|first3=Chik Hong|last4=Chen|first4=Huiyi|last5=Algar|first5=Elizabeth|last6=Taubenheim|first6=Nadine|last7=Campbell|first7=Janine|last8=Mechinaud|first8=Francoise|last9=Campbell|first9=Martin|date=2019-05|title=ALK-positive histiocytosis: an expanded clinicopathologic spectrum and frequent presence of KIF5B-ALK fusion|url=https://pubmed.ncbi.nlm.nih.gov/30573850/|journal=Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc|volume=32|issue=5|pages=598–608|doi=10.1038/s41379-018-0168-6|issn=1530-0285|pmid=30573850}}</ref><ref>{{Cite journal|last=Chan|first=John K. C.|last2=Lamant|first2=Laurence|last3=Algar|first3=Elizabeth|last4=Delsol|first4=Georges|last5=Tsang|first5=William Y. W.|last6=Lee|first6=King C.|last7=Tiedemann|first7=Karin|last8=Chow|first8=Chung W.|date=2008-10-01|title=ALK+ histiocytosis: a novel type of systemic histiocytic proliferative disorder of early infancy|url=https://pubmed.ncbi.nlm.nih.gov/18660380/|journal=Blood|volume=112|issue=7|pages=2965–2968|doi=10.1182/blood-2008-03-147017|issn=1528-0020|pmid=18660380}}</ref>.''
[[File:FISH break apart probe for ALK gene .jpg|alt=|none|thumb|640x640px|FISH break apart probe for ''ALK'' gene showing a split signal indicating ''ALK'' rearrangement in a case of ALK(+) ALCL.]]
[[File:FISH break apart probe for ALK gene .jpg|alt=|none|thumb|640x640px|FISH break apart probe for ''ALK'' gene showing a split signal indicating ''ALK'' rearrangement in a case of ALK(+) ALCL.]]
Line 331:
Line 344:
*As stated above, the diagnosis is based on histology and immunohistochemistry
*As stated above, the diagnosis is based on histology and immunohistochemistry
*FISH is not required for diagnosis in routine practice <ref>{{Cite journal|last=Falini|first=B.|last2=Bigerna|first2=B.|last3=Fizzotti|first3=M.|last4=Pulford|first4=K.|last5=Pileri|first5=S. A.|last6=Delsol|first6=G.|last7=Carbone|first7=A.|last8=Paulli|first8=M.|last9=Magrini|first9=U.|date=1998-09|title=ALK expression defines a distinct group of T/null lymphomas ("ALK lymphomas") with a wide morphological spectrum|url=https://pubmed.ncbi.nlm.nih.gov/9736036/|journal=The American Journal of Pathology|volume=153|issue=3|pages=875–886|doi=10.1016/S0002-9440(10)65629-5|issn=0002-9440|pmc=1853018|pmid=9736036}}</ref><ref>{{Cite journal|last=Pittaluga|first=S.|last2=Wlodarska|first2=I.|last3=Pulford|first3=K.|last4=Campo|first4=E.|last5=Morris|first5=S. W.|last6=Van den Berghe|first6=H.|last7=De Wolf-Peeters|first7=C.|date=1997-08|title=The monoclonal antibody ALK1 identifies a distinct morphological subtype of anaplastic large cell lymphoma associated with 2p23/ALK rearrangements|url=https://pubmed.ncbi.nlm.nih.gov/9250148/|journal=The American Journal of Pathology|volume=151|issue=2|pages=343–351|issn=0002-9440|pmc=1858018|pmid=9250148}}</ref>
*FISH is not required for diagnosis in routine practice <ref name=":27">{{Cite journal|last=Falini|first=B.|last2=Bigerna|first2=B.|last3=Fizzotti|first3=M.|last4=Pulford|first4=K.|last5=Pileri|first5=S. A.|last6=Delsol|first6=G.|last7=Carbone|first7=A.|last8=Paulli|first8=M.|last9=Magrini|first9=U.|date=1998-09|title=ALK expression defines a distinct group of T/null lymphomas ("ALK lymphomas") with a wide morphological spectrum|url=https://pubmed.ncbi.nlm.nih.gov/9736036/|journal=The American Journal of Pathology|volume=153|issue=3|pages=875–886|doi=10.1016/S0002-9440(10)65629-5|issn=0002-9440|pmc=1853018|pmid=9736036}}</ref><ref name=":28">{{Cite journal|last=Pittaluga|first=S.|last2=Wlodarska|first2=I.|last3=Pulford|first3=K.|last4=Campo|first4=E.|last5=Morris|first5=S. W.|last6=Van den Berghe|first6=H.|last7=De Wolf-Peeters|first7=C.|date=1997-08|title=The monoclonal antibody ALK1 identifies a distinct morphological subtype of anaplastic large cell lymphoma associated with 2p23/ALK rearrangements|url=https://pubmed.ncbi.nlm.nih.gov/9250148/|journal=The American Journal of Pathology|volume=151|issue=2|pages=343–351|issn=0002-9440|pmc=1858018|pmid=9250148}}</ref>
Prognosis
Prognosis
Line 339:
Line 352:
*Different ''ALK'' translocation partners do not have prognostic significance
*Different ''ALK'' translocation partners do not have prognostic significance
*Survival is predicted by International Prognostic Index (IPI) with overall long term survival rate approaching 80%
*Survival is predicted by International Prognostic Index (IPI) with overall long term survival rate approaching 80%
*Detecting minimal residual disease by PCR for ''[[NPM1-ALK]]'' (not readily commercially available) in bone marrow and peripheral blood during treatment could identify patients at risk of relapse<ref>{{Cite journal|last=C|first=Damm-Welk|last2=L|first2=Mussolin|last3=M|first3=Zimmermann|last4=M|first4=Pillon|last5=W|first5=Klapper|last6=I|first6=Oschlies|last7=Es|first7=d'Amore|last8=A|first8=Reiter|last9=W|first9=Woessmann|date=2014|title=Early assessment of minimal residual disease identifies patients at very high relapse risk in NPM-ALK-positive anaplastic large-cell lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/24297868/|language=en|pmid=24297868}}</ref>
*Detecting minimal residual disease by PCR for ''[[NPM1-ALK]]'' (not readily commercially available) in bone marrow and peripheral blood during treatment could identify patients at risk of relapse<ref name=":29">{{Cite journal|last=C|first=Damm-Welk|last2=L|first2=Mussolin|last3=M|first3=Zimmermann|last4=M|first4=Pillon|last5=W|first5=Klapper|last6=I|first6=Oschlies|last7=Es|first7=d'Amore|last8=A|first8=Reiter|last9=W|first9=Woessmann|date=2014|title=Early assessment of minimal residual disease identifies patients at very high relapse risk in NPM-ALK-positive anaplastic large-cell lymphoma|url=https://pubmed.ncbi.nlm.nih.gov/24297868/|language=en|pmid=24297868}}</ref>
*Small-cell or lymphohistiocytic patterns tend to present with disseminated disease and have a less favorable prognosis than the common pattern<ref>{{Cite journal|last=L|first=Lamant|last2=K|first2=McCarthy|last3=E|first3=d'Amore|last4=W|first4=Klapper|last5=A|first5=Nakagawa|last6=M|first6=Fraga|last7=J|first7=Maldyk|last8=I|first8=Simonitsch-Klupp|last9=I|first9=Oschlies|date=2011|title=Prognostic impact of morphologic and phenotypic features of childhood ALK-positive anaplastic large-cell lymphoma: results of the ALCL99 study|url=https://pubmed.ncbi.nlm.nih.gov/22084369/|language=en|pmid=22084369}}</ref>
*'''''Small-cell or lymphohistiocytic patterns tend to present with disseminated disease and have a less favorable prognosis than the common pattern<ref>{{Cite journal|last=L|first=Lamant|last2=K|first2=McCarthy|last3=E|first3=d'Amore|last4=W|first4=Klapper|last5=A|first5=Nakagawa|last6=M|first6=Fraga|last7=J|first7=Maldyk|last8=I|first8=Simonitsch-Klupp|last9=I|first9=Oschlies|date=2011|title=Prognostic impact of morphologic and phenotypic features of childhood ALK-positive anaplastic large-cell lymphoma: results of the ALCL99 study|url=https://pubmed.ncbi.nlm.nih.gov/22084369/|language=en|pmid=22084369}}</ref>'''''
*NOTCH1 may be a biomarker for risk of relapse<ref name=":5" />
*NOTCH1 may be a biomarker for risk of relapse<ref name=":5" />
Therapy
'''''Therapy'''''
*CD30 expression on ALCL (ALK+ or ALK-) allows for targeted therapy<ref name=":2">{{Cite journal|displayauthors=1|last=National Comprehensive Cancer Network|first=|date=January 2021|title=NCCN Clinical Practice Guidelines in Oncology: T-cell lymphomas|url=https://www.nccn.org/professionals/physician_gls/pdf/t-cell.pdf|journal=|volume=|pages=|via=}}</ref>
*CD30 expression on ALCL (ALK+ or ALK-) allows for targeted therapy<ref name=":2">{{Cite journal|displayauthors=1|last=National Comprehensive Cancer Network|first=|date=January 2021|title=NCCN Clinical Practice Guidelines in Oncology: T-cell lymphomas|url=https://www.nccn.org/professionals/physician_gls/pdf/t-cell.pdf|journal=|volume=|pages=|via=}}</ref>
Line 352:
Line 365:
**#See also gene mutations section above
**#See also gene mutations section above
**#Engagement of other cell signaling pathways
**#Engagement of other cell signaling pathways
*Preclinical models suggest role of:
*'''''Preclinical models suggest role of:'''''
**Combination therapy with hypomethylating agents (such as azacitidine) and epigenetic modifying drugs (such as romidepsin, a histone deacetylase inhibitor)<ref>{{Cite journal|last=Rozati|first=Sima|last2=Cheng|first2=Phil F.|last3=Widmer|first3=Daniel S.|last4=Fujii|first4=Kazuyasu|last5=Levesque|first5=Mitchell P.|last6=Dummer|first6=Reinhard|date=2016-04-15|title=Romidepsin and Azacitidine Synergize in their Epigenetic Modulatory Effects to Induce Apoptosis in CTCL|url=https://pubmed.ncbi.nlm.nih.gov/26660520|journal=Clinical Cancer Research: An Official Journal of the American Association for Cancer Research|volume=22|issue=8|pages=2020–2031|doi=10.1158/1078-0432.CCR-15-1435|issn=1557-3265|pmid=26660520}}</ref>
**'''''Combination therapy with hypomethylating agents (such as azacitidine) and epigenetic modifying drugs (such as romidepsin, a histone deacetylase inhibitor)<ref>{{Cite journal|last=Rozati|first=Sima|last2=Cheng|first2=Phil F.|last3=Widmer|first3=Daniel S.|last4=Fujii|first4=Kazuyasu|last5=Levesque|first5=Mitchell P.|last6=Dummer|first6=Reinhard|date=2016-04-15|title=Romidepsin and Azacitidine Synergize in their Epigenetic Modulatory Effects to Induce Apoptosis in CTCL|url=https://pubmed.ncbi.nlm.nih.gov/26660520|journal=Clinical Cancer Research: An Official Journal of the American Association for Cancer Research|volume=22|issue=8|pages=2020–2031|doi=10.1158/1078-0432.CCR-15-1435|issn=1557-3265|pmid=26660520}}</ref>'''''
**Inhibitors of HSP90 and mTOR inhibition<ref name=":3" />
**'''''Inhibitors of HSP90 and mTOR inhibition<ref name=":3" />'''''
**NOTCH1 inhibition by γ-secretase inhibitors (GSI) in combination with crizotinib may provide synergistic anti-tumor activity, or as a single agent in ALK-inhibitor resistant cell lines<ref name=":5" />
**'''''NOTCH1 inhibition by γ-secretase inhibitors (GSI) in combination with crizotinib may provide synergistic anti-tumor activity, or as a single agent in ALK-inhibitor resistant cell lines<ref name=":5" />'''''
</blockquote>
</blockquote>
Line 510:
Line 523:
|No
|No
|Yes
|Yes
|
|May be a biomarker for risk of relapse<ref name=":5" />
|-
|-
|TP53<ref name=":4" />
|TP53<ref name=":4" />
Line 530:
Line 543:
|
|
|Yes
|Yes
|
|ALK kinase domain secondary mutations, including L1196 M, G1269A, L1152R, C1156Y, I1171T, F1174 L, G1202R, and S1206Y, have been identified as the key mechanism of resistance
*ALK kinase domain secondary mutations, including L1196 M, G1269A, L1152R, C1156Y, I1171T, F1174 L, G1202R, and S1206Y, have been identified as the key mechanism of resistance
(General Instructions – The main focus of these pages is the clinically significant genetic alterations in each disease type. Use HUGO-approved gene names and symbols (italicized when appropriate), HGVS-based nomenclature for variants, as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples). Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see Author_Instructions and FAQs as well as contact your Associate Editor or Technical Support)
Primary Author(s)*
Miguel Gonzalez Mancera, MD, Cedars-Sinai, Los Angeles, CA
Sumire Kitahara, MD, Cedars-Sinai, Los Angeles, CA
Anaplastic Large Cell Lymphoma, ALK-Positive (ALK+ ALCL) is a T-cell lymphoma characterized by usually large lymphoma cells with abundant cytoplasm and pleomorphic nuclei, often horse-shoe shaped (see Morphologic Features below), with a chromosomal rearrangement involving the ALK gene resulting in expression of ALK protein and CD30
Synonyms / Terminology
Ki-1 (CD30) lymphoma - obsolete
Epidemiology / Prevalence
ALCL (ALK+, ALK-, and primary cutaneous) account for <5% of all cases of non-Hodgkin lymphoma (NHL)[1]
The content below was from the old template. Please incorporate above.
Most patients (70%) present with advanced (stage III-IV) disease and B-symptoms.[2]
Sites of Involvement
Lymph nodes and extranodal sites (most commonly skin, bone, soft tissue, lungs and liver)[1]
Bone marrow involvement detected in 30% when using immunohistochemistry (CD30 and EMA). Can miss marrow involvement by H&E evaluation alone, which detects involvement with ~10% incidence.[3]
Lymphoma cells characterized by eccentric, horseshoe-shaped or kidney-shaped nuclei, often with eosinophilic cytoplasm accentuated near the nucleus
Usually large in size, but may also be smaller
Present in varying proportions
Seen in all morphological variants/patterns of ALK+ ALCL
Morphological variants/patterns
Common (60%): predominant population of large hallmark cells
Lymphohistiocytic (10%): lymphoma cells are admixed with numerous reactive histiocytes that may obscure the lymphoma cells; lymphoma cells often cluster around vessels and are often smaller than in the common pattern
Small cell (5-10%): predominant population of smaller lymphoma cells; hallmark cells are often concentrated around vessels; may also see "fried egg cells" (pale cytoplasm with central nucleus) or signet ring-like cells; can misdiagnose of peripheral T-cell lymphoma, NOS
Positive (universal) - Cell membrane and Golgi; large lymphoma cells show strongest staining; smaller cells may show weak, partial to negative staining
CD30
Positive (universal) - Cellular location of ALK staining varies depending on ALK translocation partner. In the most common t(2;5), most cases show both cytoplasmic and nuclear
The content below was from the old template. Please incorporate above.
ALK+ ALCL show the following staining pattern[7][8]:
CD30+: Cell membrane and Golgi; large lymphoma cells show strongest staining; smaller cells may show weak, partial to negative staining
ALK+: cellular location of ALK staining varies depending on ALK translocation partner. In the most common t(2;5), most cases show both cytoplasmic and nuclear ALK staining. In the small cell variant, staining is usually restricted to the nucleus
EMA+: some cases show positivity in only a proportion of lymphoma cells
CD3(-): >75% of cases are CD3-negative
CD4>>>CD8
CD2 and CD5: Majority positive
Cytotoxic marker(s)+: TIA1, granzyme B and/or perforin
CD45: variably positive
CD25+
BCL2-negative
Chromosomal Rearrangements (Gene Fusions)
FISH is not required for diagnosis in routine practice [9][10].
Approximately 80% of cases show a cytogenetic translocation t(2;5) (NPM1-ALK, t(2;5)(p23;q35)) which fuses the ALK gene to the nucleophosmine (NPM) gene at 5q35, resulting in the overexpression and constitutive activation of a chimeric ALK fusion protein, which plays an important role in ALK-mediated oncogenesis.
Of note, identifying the ALK fusion partner is not considered necessary in routine clinical practice.
Detecting minimal residual disease by PCR for NPM1-ALK (not readily commercially available) in bone marrow and peripheral blood during treatment could identify patients at risk of relapse[12]
ALK inhibition (crizotinib) can be an effective 2nd-line therapeutic strategy as ALK is essential for the proliferation and survival of ALK+ ALCL cells[13][6][14]
Drug resistance may develop due to:
Mutations of the ALK gene impairing binding of the inhibitor[15]; other ALK inhibitors are not currently FDA-approved for use in ALK+ ALCL
The content below was from the old template. Please incorporate above.
ALK(+) ALCL is characterized by chromosomal translocations involving ALK gene, a receptor tyrosine kinase domain at 2p23.
Approximately 80% of cases show a cytogenetic translocation t(2;5) (NPM1-ALK, t(2;5)(p23;q35)) which fuses the ALK gene to the nucleophosmine (NPM) gene at 5q35, resulting in the overexpression and constitutive activation of a chimeric ALK fusion protein, which plays an important role in ALK-mediated oncogenesis.[11]
FISH break apart probe for ALK gene showing a split signal indicating ALK rearrangement in a case of ALK(+) ALCL.
Table below shows described ALK translocations with ALK staining pattern, and frequency of cases. Of note, identifying the ALK fusion partner is not considered necessary in routine clinical practice.
editv4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).
Please incorporate this section into the relevant tables found in:
Chromosomal Rearrangements (Gene Fusions)
Individual Region Genomic Gain/Loss/LOH
Characteristic Chromosomal Patterns
Gene Mutations (SNV/INDEL)
Diagnosis
As stated above, the diagnosis is based on histology and immunohistochemistry
FISH is not required for diagnosis in routine practice [9][10]
Prognosis
ALK+ ALCL has a better survival rate compared to ALK-negative ALCL
However, differences in patient age (younger in ALK+) may account for this better survival[39]
Different ALK translocation partners do not have prognostic significance
Survival is predicted by International Prognostic Index (IPI) with overall long term survival rate approaching 80%
Detecting minimal residual disease by PCR for NPM1-ALK (not readily commercially available) in bone marrow and peripheral blood during treatment could identify patients at risk of relapse[12]
Small-cell or lymphohistiocytic patterns tend to present with disseminated disease and have a less favorable prognosis than the common pattern[40]
ALK inhibition (crizotinib) can be an effective 2nd-line therapeutic strategy as ALK is essential for the proliferation and survival of ALK+ ALCL cells[13][6][14]
Drug resistance may develop due to:
Mutations of the ALK gene impairing binding of the inhibitor[15]; other ALK inhibitors are not currently FDA-approved for use in ALK+ ALCL
See also gene mutations section above
Engagement of other cell signaling pathways
Preclinical models suggest role of:
Combination therapy with hypomethylating agents (such as azacitidine) and epigenetic modifying drugs (such as romidepsin, a histone deacetylase inhibitor)[42]
NOTCH1 inhibition by γ-secretase inhibitors (GSI) in combination with crizotinib may provide synergistic anti-tumor activity, or as a single agent in ALK-inhibitor resistant cell lines[41]
Individual Region Genomic Gain / Loss / LOH
Put your text here and fill in the table (Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable.)
Chr #
Gain / Loss / Amp / LOH
Minimal Region Genomic Coordinates [Genome Build]
Minimal Region Cytoband
Diagnostic Significance (Yes, No or Unknown)
Prognostic Significance (Yes, No or Unknown)
Therapeutic Significance (Yes, No or Unknown)
Notes
2q
Gain
Chr 2:29,192,774-29,921,586
EXAMPLE
chr7
No
Yes
No
EXAMPLE
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference).
EXAMPLE
8
EXAMPLE Gain
EXAMPLE
chr8:1-145,138,636 [hg38]
EXAMPLE
chr8
No
No
No
EXAMPLE
Common recurrent secondary finding for t(8;21) (add reference).
Put your text here (EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis)
Chromosomal Pattern
Diagnostic Significance (Yes, No or Unknown)
Prognostic Significance (Yes, No or Unknown)
Therapeutic Significance (Yes, No or Unknown)
Notes
EXAMPLE
Co-deletion of 1p and 18q
Yes
No
No
EXAMPLE:
See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).
The content below was from the old template. Please incorporate above.
See other sections.
Gene Mutations (SNV / INDEL)
Put your text here and fill in the table (Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity.)
ALK kinase domain secondary mutations, including L1196 M, G1269A, L1152R, C1156Y, I1171T, F1174 L, G1202R, and S1206Y, have been identified as the key mechanism of resistance
JAK1, STAT3: Mutations described in ALK(-) ALCL[53], and breast implant-associated anaplastic large cell lymphoma (BIA-ALCL)[54]
RHOA, DNMT3A, CD28: Mutations described in peripheral T cell-lymphoma (PTCL), NOS, and in angioimmunoblastic T-cell lymphoma (AITL)[55]
IDH2 mutations are relatively specific for AITL[56][57]
A variety of mechanisms for the acquired resistance to ALK inhibitors, such as crizotinib, have been described:
ALK kinase domain secondary mutations, including L1196 M, G1269A, L1152R, C1156Y, I1171T, F1174 L, G1202R, and S1206Y, have been identified as the key mechanism of resistance[52][46][47][48][49][50][51]
The G1269A mutation, in which the glycine at 1269 is substituted with an alanine, causes steric hindrance, resulting in decreased affinity for crizotinib.[58][59]
Gain in ALK copy number and loss of ALK gene rearrangement have also been implicated in the development of acquired resistance to crizotinib.[47][48][49]
Epigenomic Alterations
NPM-ALK via STAT3-activated DNA methyltransferases[60] uses epigenetic silencing mechanisms to:
Downregulate tumor suppressor genes to maintain its own expression (i.e. to inhibit downregulation of NPM-ALK). Silenced tumor suppressors include:
The content below was from the old template. Please incorporate above.
Activation of the ALK catalytic domain leads to the oncogenic properties of the ALK protein, leading to activation of multiple signaling cascades including[68]:
RAS-ERK
JAK/STAT
STAT3 is a pivotal transcription factor in most ALCL subtypes:
NPM1/ALK and variants lead to expression of ALK fusion proteins with constitutive ALK tyrosine kinase activity, which converges in the activation of the downstream oncogenic transcription factor STAT3[53][55].
In the absence of ALK fusions there are activation JAK1 and/or STAT3 mutations in ALK(-) ALCL [53], and some BIA-ALCL. [69].
PI3K/AKT/mTOR
ALK-NPM-STAT3 induces:
See Epigenomics section above
TGF beta, IL-10, PD-L1/CD274 to create immunosuppressive microenvironment and evasion of immune system[70][71][72]
HIF1α expression induces expression of VEGF (tumor angiogenesis); allows lymphoma cells to adapt to hypoxic conditions[73]
Expression of embryonic genes (SOX2, SALL4) promoting stem cell-like program
Deregulation of microRNAs (miR-155, miR-101, miR-17-92 cluster, miR-26a, miR-16)[74][75][76][77][78]
Genetic Diagnostic Testing Methods
Diagnosis is based on histologic evaluation and immunohistochemical positivity for CD30 and ALK on the T-lymphoma cells.
FISH using an ALK breakapart probe or karyotype analysis can detect ALK translocations, but is not required for diagnosis as it can be established by morphology and immunohistochemistry.
Familial Forms
None
Additional Information
None
Links
See References.
References
(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking on where you want to insert the reference, selecting the “Cite” icon at the top of the page, and using the “Automatic” tab option to search such as by PMID to select the reference to insert. The reference list in this section will be automatically generated and sorted.If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference.)
↑ 1.01.11.21.31.4Arber DA, et al., (2017). Anaplastic large cell lymphoma, ALK-positive, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. IARC Press: Lyon, France, p413-418.
*Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage). Additional global feedback or concerns are also welcome.
*Citation of this Page: “ALK-positive anaplastic large cell lymphoma”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 07/23/2024, https://ccga.io/index.php/HAEM5:ALK-positive_anaplastic_large_cell_lymphoma.