HAEM5:Chronic eosinophilic leukaemia: Difference between revisions
| [checked revision] | [checked revision] |
Bailey.Glen (talk | contribs) No edit summary |
Bailey.Glen (talk | contribs) Undo revision 14840 by Bailey.Glen (talk) Tag: Undo |
||
| Line 1: | Line 1: | ||
{{DISPLAYTITLE:Chronic eosinophilic leukaemia}} | {{DISPLAYTITLE:Chronic eosinophilic leukaemia}} | ||
[[HAEM5:Table_of_Contents|Haematolymphoid Tumours ( | [[HAEM5:Table_of_Contents|Haematolymphoid Tumours (5th ed.)]] | ||
{{Under Construction}} | {{Under Construction}} | ||
| Line 7: | Line 7: | ||
}}</blockquote> | }}</blockquote> | ||
<span style="color:#0070C0">(General Instructions – The main focus of these pages is the clinically significant genetic alterations in each disease type. Use [https://www.genenames.org/ <u>HUGO-approved gene names and symbols</u>] (italicized when appropriate), [https://varnomen.hgvs.org/ HGVS-based nomenclature for variants], as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples) | <span style="color:#0070C0">(General Instructions – The main focus of these pages is the clinically significant genetic alterations in each disease type. Use [https://www.genenames.org/ <u>HUGO-approved gene names and symbols</u>] (italicized when appropriate), [https://varnomen.hgvs.org/ HGVS-based nomenclature for variants], as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples). Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see </span><u>[[Author_Instructions]]</u><span style="color:#0070C0"> and [[Frequently Asked Questions (FAQs)|<u>FAQs</u>]] as well as contact your [[Leadership|<u>Associate Editor</u>]] or [mailto:CCGA@cancergenomics.org <u>Technical Support</u>])</span> | ||
==Primary Author(s)*== | ==Primary Author(s)*== | ||
| Line 37: | Line 37: | ||
==Clinical Features== | ==Clinical Features== | ||
Put your text here and fill in the table <span style="color:#0070C0">(''Instruction: Can include references in the table | Put your text here and fill in the table <span style="color:#0070C0">(''Instruction: Can include references in the table'') </span> | ||
{| class="wikitable" | {| class="wikitable" | ||
|'''Signs and Symptoms''' | |'''Signs and Symptoms''' | ||
| | |EXAMPLE Asymptomatic (incidental finding on complete blood counts) | ||
EXAMPLE B-symptoms (weight loss, fever, night sweats) | |||
EXAMPLE Fatigue | |||
EXAMPLE Lymphadenopathy (uncommon) | |||
|- | |- | ||
|'''Laboratory Findings''' | |'''Laboratory Findings''' | ||
| | |EXAMPLE Cytopenias | ||
EXAMPLE Lymphocytosis (low level) | |||
|} | |} | ||
<blockquote class='blockedit'>{{Box-round|title= | <blockquote class='blockedit'>{{Box-round|title=v4:Clinical Features|The content below was from the old template. Please incorporate above.}} | ||
CEL, NOS is sometimes discovered incidentally in otherwise asymptomatic individuals. In other instances, patients experience constitutional symptoms including weight loss, night sweats, fever, fatigue, cough, angioedema, muscle pain, pruritis and diarrhea. Endomyocardial fibrosis with ensuing restrictive cardiomegaly is known to precipitate the most severe clinical presentation. Scarring of the bicuspid and mitral valves can lead to valvular regurgitation and intracardiac thrombi formation which may embolize to the brain and other organs. Cardiac failure may also occur. Peripheral neuropathy, central nervous system dysfunction and pulmonary symptoms due to lung infiltration as well as rheumatological findings are also common. [1] | CEL, NOS is sometimes discovered incidentally in otherwise asymptomatic individuals. In other instances, patients experience constitutional symptoms including weight loss, night sweats, fever, fatigue, cough, angioedema, muscle pain, pruritis and diarrhea. Endomyocardial fibrosis with ensuing restrictive cardiomegaly is known to precipitate the most severe clinical presentation. Scarring of the bicuspid and mitral valves can lead to valvular regurgitation and intracardiac thrombi formation which may embolize to the brain and other organs. Cardiac failure may also occur. Peripheral neuropathy, central nervous system dysfunction and pulmonary symptoms due to lung infiltration as well as rheumatological findings are also common. [1] | ||
| Line 78: | Line 78: | ||
!Finding!!Marker | !Finding!!Marker | ||
|- | |- | ||
|Positive (universal)|| | |Positive (universal)||EXAMPLE CD1 | ||
|- | |- | ||
|Positive (subset)|| | |Positive (subset)||EXAMPLE CD2 | ||
|- | |- | ||
|Negative (universal)|| | |Negative (universal)||EXAMPLE CD3 | ||
|- | |- | ||
|Negative (subset)|| | |Negative (subset)||EXAMPLE CD4 | ||
|} | |} | ||
| Line 99: | Line 99: | ||
!Notes | !Notes | ||
|- | |- | ||
| | |EXAMPLE t(9;22)(q34;q11.2)||EXAMPLE 3'ABL1 / 5'BCR||EXAMPLE der(22)||EXAMPLE 20% (COSMIC) | ||
EXAMPLE 30% (add reference) | |||
|Yes | |Yes | ||
|No | |No | ||
|Yes | |Yes | ||
| | |EXAMPLE | ||
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). | The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). | ||
| Line 110: | Line 110: | ||
<blockquote class='blockedit'>{{Box-round|title= | <blockquote class='blockedit'>{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}} | ||
No single or specific genetic abnormality has been identified in CEL, NOS. Rearrangement of PDGFRA, PDGFRB, or FGFR1 excludes the diagnosis of CEL, NOS. PCM1-JAK2, ETV6-JAK2, or BCR-JAK2 are also specifically excluded. [1] Three unique cases of myeloid/lymphoid neoplasm with eosinophilia have shown ''FLT3'' rearrangement: one with t(13;14)(q12;q32)/''TRIP11-FLT3'' rearrangement, and two with ''ETV6-FLT3''. Eosinophilia and ''FLT3'' rearrangement typically shows myeloproliferative neoplasms, most frequently CEL, NOS, and T-ALL. [5] A unique case of CEL,NOS with a novel fusion gene between exon 22 of GCC2 and exon 12 of PDGFRB was detected and confirmed by PCR in a 54 year old man presenting with cough and dyspnea. [6] | No single or specific genetic abnormality has been identified in CEL, NOS. Rearrangement of PDGFRA, PDGFRB, or FGFR1 excludes the diagnosis of CEL, NOS. PCM1-JAK2, ETV6-JAK2, or BCR-JAK2 are also specifically excluded. [1] Three unique cases of myeloid/lymphoid neoplasm with eosinophilia have shown ''FLT3'' rearrangement: one with t(13;14)(q12;q32)/''TRIP11-FLT3'' rearrangement, and two with ''ETV6-FLT3''. Eosinophilia and ''FLT3'' rearrangement typically shows myeloproliferative neoplasms, most frequently CEL, NOS, and T-ALL. [5] A unique case of CEL,NOS with a novel fusion gene between exon 22 of GCC2 and exon 12 of PDGFRB was detected and confirmed by PCR in a 54 year old man presenting with cough and dyspnea. [6] | ||
| Line 118: | Line 118: | ||
!Chromosomal Rearrangement!!Genes in Fusion (5’ or 3’ Segments)!!Pathogenic Derivative!!Prevalence | !Chromosomal Rearrangement!!Genes in Fusion (5’ or 3’ Segments)!!Pathogenic Derivative!!Prevalence | ||
|- | |- | ||
| | |EXAMPLE t(9;22)(q34;q11.2)||EXAMPLE 3'ABL1 / 5'BCR||EXAMPLE der(22)||EXAMPLE 5% | ||
|- | |- | ||
| | |EXAMPLE t(8;21)(q22;q22)||EXAMPLE 5'RUNX1 / 3'RUNXT1||EXAMPLE der(8)||EXAMPLE 5% | ||
|} | |} | ||
| Line 126: | Line 126: | ||
<blockquote class='blockedit'>{{Box-round|title= | <blockquote class='blockedit'>{{Box-round|title=v4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).|Please incorporate this section into the relevant tables found in: | ||
* Chromosomal Rearrangements (Gene Fusions) | * Chromosomal Rearrangements (Gene Fusions) | ||
* Individual Region Genomic Gain/Loss/LOH | * Individual Region Genomic Gain/Loss/LOH | ||
| Line 137: | Line 137: | ||
==Individual Region Genomic Gain / Loss / LOH== | ==Individual Region Genomic Gain / Loss / LOH== | ||
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable | Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable.'') </span> | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
| Line 147: | Line 147: | ||
!Notes | !Notes | ||
|- | |- | ||
| | |EXAMPLE | ||
7 | 7 | ||
| | |EXAMPLE Loss | ||
| | |EXAMPLE | ||
chr7:1- 159,335,973 [hg38] | chr7:1- 159,335,973 [hg38] | ||
| | |EXAMPLE | ||
chr7 | chr7 | ||
| Line 160: | Line 160: | ||
|Yes | |Yes | ||
|No | |No | ||
| | |EXAMPLE | ||
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference). | Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference). | ||
|- | |- | ||
| | |EXAMPLE | ||
8 | 8 | ||
| | |EXAMPLE Gain | ||
| | |EXAMPLE | ||
chr8:1-145,138,636 [hg38] | chr8:1-145,138,636 [hg38] | ||
| | |EXAMPLE | ||
chr8 | chr8 | ||
| Line 177: | Line 177: | ||
|No | |No | ||
|No | |No | ||
| | |EXAMPLE | ||
Common recurrent secondary finding for t(8;21) (add reference). | Common recurrent secondary finding for t(8;21) (add reference). | ||
|} | |} | ||
<blockquote class='blockedit'>{{Box-round|title= | <blockquote class='blockedit'>{{Box-round|title=v4:Genomic Gain/Loss/LOH|The content below was from the old template. Please incorporate above.}} | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
| Line 188: | Line 188: | ||
!Chromosome Number!!Gain/Loss/Amp/LOH!!Region | !Chromosome Number!!Gain/Loss/Amp/LOH!!Region | ||
|- | |- | ||
| | |EXAMPLE 8||EXAMPLE Gain||EXAMPLE chr8:0-1000000 | ||
|- | |- | ||
| | |EXAMPLE 7||EXAMPLE Loss||EXAMPLE chr7:0-1000000 | ||
|} | |} | ||
| Line 196: | Line 196: | ||
==Characteristic Chromosomal Patterns== | ==Characteristic Chromosomal Patterns== | ||
Put your text here <span style="color:#0070C0">(''EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis | Put your text here <span style="color:#0070C0">(''EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis'')</span> | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
| Line 206: | Line 206: | ||
!Notes | !Notes | ||
|- | |- | ||
| | |EXAMPLE | ||
Co-deletion of 1p and 18q | Co-deletion of 1p and 18q | ||
| Line 212: | Line 212: | ||
|No | |No | ||
|No | |No | ||
| | |EXAMPLE: | ||
See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). | See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). | ||
|} | |} | ||
<blockquote class='blockedit'>{{Box-round|title= | <blockquote class='blockedit'>{{Box-round|title=v4:Characteristic Chromosomal Aberrations / Patterns|The content below was from the old template. Please incorporate above.}} | ||
A recurrent karyotypic abnormality typically observed in myeloid disorders such as gain of chromosome 8, loss of chromosome 7 or isochromosome 17q supports a diagnosis as well as the presence of a translocation. [1] [1] Morsia et al demonstrated cytogenetic abnormalities in 15 of 17 (88.2%) patients diagnosed with CEL, NOS including trisomy 8 (n = 4), and complex karyotype (n = 3). [4] | A recurrent karyotypic abnormality typically observed in myeloid disorders such as gain of chromosome 8, loss of chromosome 7 or isochromosome 17q supports a diagnosis as well as the presence of a translocation. [1] [1] Morsia et al demonstrated cytogenetic abnormalities in 15 of 17 (88.2%) patients diagnosed with CEL, NOS including trisomy 8 (n = 4), and complex karyotype (n = 3). [4] | ||
| Line 224: | Line 224: | ||
==Gene Mutations (SNV / INDEL)== | ==Gene Mutations (SNV / INDEL)== | ||
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well | Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity.'') </span> | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
| Line 234: | Line 234: | ||
!Notes | !Notes | ||
|- | |- | ||
| | |EXAMPLE: TP53; Variable LOF mutations | ||
EXAMPLE: | |||
EGFR; Exon 20 mutations | EGFR; Exon 20 mutations | ||
EXAMPLE: BRAF; Activating mutations | |||
| | |EXAMPLE: TSG | ||
| | |EXAMPLE: 20% (COSMIC) | ||
EXAMPLE: 30% (add Reference) | |||
| | |EXAMPLE: IDH1 R123H | ||
| | |EXAMPLE: EGFR amplification | ||
| | | | ||
| | | | ||
| | | | ||
| | |EXAMPLE: Excludes hairy cell leukemia (HCL) (add reference). | ||
<br /> | <br /> | ||
|} | |} | ||
| Line 256: | Line 256: | ||
<blockquote class='blockedit'>{{Box-round|title= | <blockquote class='blockedit'>{{Box-round|title=v4:Gene Mutations (SNV/INDEL)|The content below was from the old template. Please incorporate above.}} | ||
JAK2 mutations have been identified, however mutations in ASXL1, TET2 and EZH2 appear to be common. [1] The study by Morsia et al. of 17 CEL patients demonstrated two patients each with 13q, 20q deletion, and chromosome 1 abnormalities, one patient with monosomy 7 and one with 3q deletion. All seven patients with NGS studies harbored one or more mutations; ''ASXL1'' (42.9%); ''IDH1'' (28.6%), and one each (14.3%) with ''TP53'', ''SRSF2'', ''SH2B3'', ''STAT5B'', ''KDM6A'' and ''NF1'' mutations. [4] A novel ''JAK2'' exon 13 insertion/deletion mutant has been identified and described by Patel et al. in a patient fulfilling diagnostic criteria for both PV and CEL. This study demonstrated that JAK2ex13InDel bears mechanistic resemblance to JAK2V617F but can activate STAT5 in the absence of βc family cytokines IL-3, IL-5, and GM-CSF, potentially promoting eosinophilic differentiation. [7] Keleman et al. discussed STAT5B mutations as reported in four cases: two cases of CEL, NOS; one case of CMML with eosinophilia; and one case of MDS with eosinophilia, respectively. While the presence of a STAT5B N642H mutation may be a potential marker of chronic eosinophilic neoplasms, similar mutations have been described in nonclonal HE and may not be independently sufficient to establish a diagnosis of CEL, NOS. [8] | JAK2 mutations have been identified, however mutations in ASXL1, TET2 and EZH2 appear to be common. [1] The study by Morsia et al. of 17 CEL patients demonstrated two patients each with 13q, 20q deletion, and chromosome 1 abnormalities, one patient with monosomy 7 and one with 3q deletion. All seven patients with NGS studies harbored one or more mutations; ''ASXL1'' (42.9%); ''IDH1'' (28.6%), and one each (14.3%) with ''TP53'', ''SRSF2'', ''SH2B3'', ''STAT5B'', ''KDM6A'' and ''NF1'' mutations. [4] A novel ''JAK2'' exon 13 insertion/deletion mutant has been identified and described by Patel et al. in a patient fulfilling diagnostic criteria for both PV and CEL. This study demonstrated that JAK2ex13InDel bears mechanistic resemblance to JAK2V617F but can activate STAT5 in the absence of βc family cytokines IL-3, IL-5, and GM-CSF, potentially promoting eosinophilic differentiation. [7] Keleman et al. discussed STAT5B mutations as reported in four cases: two cases of CEL, NOS; one case of CMML with eosinophilia; and one case of MDS with eosinophilia, respectively. While the presence of a STAT5B N642H mutation may be a potential marker of chronic eosinophilic neoplasms, similar mutations have been described in nonclonal HE and may not be independently sufficient to establish a diagnosis of CEL, NOS. [8] | ||
| Line 264: | Line 264: | ||
!Gene!!Mutation!!Oncogene/Tumor Suppressor/Other!!Presumed Mechanism (LOF/GOF/Other; Driver/Passenger)!!Prevalence (COSMIC/TCGA/Other) | !Gene!!Mutation!!Oncogene/Tumor Suppressor/Other!!Presumed Mechanism (LOF/GOF/Other; Driver/Passenger)!!Prevalence (COSMIC/TCGA/Other) | ||
|- | |- | ||
| | |EXAMPLE TP53||EXAMPLE R273H||EXAMPLE Tumor Suppressor||EXAMPLE LOF||EXAMPLE 20% | ||
|} | |} | ||
| Line 272: | Line 272: | ||
!Type!!Gene/Region/Other | !Type!!Gene/Region/Other | ||
|- | |- | ||
|Concomitant Mutations|| | |Concomitant Mutations||EXAMPLE IDH1 R123H | ||
|- | |- | ||
|Secondary Mutations|| | |Secondary Mutations||EXAMPLE Trisomy 7 | ||
|- | |- | ||
|Mutually Exclusive|| | |Mutually Exclusive||EXAMPLE EGFR Amplification | ||
|} | |} | ||
| Line 284: | Line 284: | ||
==Genes and Main Pathways Involved== | ==Genes and Main Pathways Involved== | ||
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Can include references in the | Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Can include references in the table.'')</span> | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome | !Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome | ||
|- | |- | ||
| | |EXAMPLE: BRAF and MAP2K1; Activating mutations | ||
| | |EXAMPLE: MAPK signaling | ||
| | |EXAMPLE: Increased cell growth and proliferation | ||
|- | |- | ||
| | |EXAMPLE: CDKN2A; Inactivating mutations | ||
| | |EXAMPLE: Cell cycle regulation | ||
| | |EXAMPLE: Unregulated cell division | ||
|- | |- | ||
| | |EXAMPLE: KMT2C and ARID1A; Inactivating mutations | ||
| | |EXAMPLE: Histone modification, chromatin remodeling | ||
| | |EXAMPLE: Abnormal gene expression program | ||
|} | |} | ||
<blockquote class='blockedit'>{{Box-round|title= | <blockquote class='blockedit'>{{Box-round|title=v4:Genes and Main Pathways Involved|The content below was from the old template. Please incorporate above.}} | ||
</blockquote> | </blockquote> | ||