HAEM5:Acute myeloid leukaemia with RBM15::MRTFA fusion: Difference between revisions

From Compendium of Cancer Genome Aberrations
Jump to navigation Jump to search
[checked revision][checked revision]
No edit summary
No edit summary
Line 60: Line 60:


==Gene Rearrangements==
==Gene Rearrangements==
This AML subtype is classified based on the presence of a t(1;22)(p13.3;q13.1), which results in fusion of ''RBM15''(''OTT'') at 1p13.3 [hg38] and ''MKL1''(''MAL'') at 22q13.1 [hg38] with variable breakpoints<ref name=":1">{{Cite journal|last=Ma|first=Z.|last2=Morris|first2=S. W.|last3=Valentine|first3=V.|last4=Li|first4=M.|last5=Herbrick|first5=J. A.|last6=Cui|first6=X.|last7=Bouman|first7=D.|last8=Li|first8=Y.|last9=Mehta|first9=P. K.|date=2001|title=Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/11431691|journal=Nature Genetics|volume=28|issue=3|pages=220–221|doi=10.1038/90054|issn=1061-4036|pmid=11431691}}</ref><ref>{{Cite journal|last=Arber|first=Daniel A.|last2=Orazi|first2=Attilio|last3=Hasserjian|first3=Robert|last4=Thiele|first4=Jürgen|last5=Borowitz|first5=Michael J.|last6=Le Beau|first6=Michelle M.|last7=Bloomfield|first7=Clara D.|last8=Cazzola|first8=Mario|last9=Vardiman|first9=James W.|date=2016|title=The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/27069254|journal=Blood|volume=127|issue=20|pages=2391–2405|doi=10.1182/blood-2016-03-643544|issn=1528-0020|pmid=27069254}}</ref>.  Although both reciprocal fusions are expressed, the ''RBM15''-''MKL1'' fusion on the derivative chromosome 22 is the candidate oncoprotein because it contains all of the putative functional domains of both proteins<ref name=":1" />. Typically the ''RBM15''-''MKL1'' fusion presents as the sole abnormality<ref name=":0">Arber DA, et al., (2017). Acute myeloid leukaemia with recurrent genetic abnormalities, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. Revised 4th Edition. IARC Press: Lyon, France, p139-140.</ref>.
Translocation-confirmed cases with <20% blasts on aspirate smears should be correlated with the biopsy to exclude an artificially low count due to marrow fibrosis, and then if the blasts remain low, followed closely to monitor for development of more definitive evidence for AML (such as the occurrence of extramedullary disease or myeloid sarcoma)<ref name=":0" />.
This translocation was originally associated with poor prognosis but some studies demonstrate good response to intensive chemotherapy with long disease-free survival<ref name=":0" />.  Two retrospective studies in 2015 and 2016 of non-Down syndrome pediatric AMKL patients found that the ''RBM15''-''MKL1'' fusion was present in 12% and 13.7% of cases, was associated with significantly younger onset, and was considered to have a relative risk classification of intermediate or standard<ref name=":2">{{Cite journal|last=Inaba|first=Hiroto|last2=Zhou|first2=Yinmei|last3=Abla|first3=Oussama|last4=Adachi|first4=Souichi|last5=Auvrignon|first5=Anne|last6=Beverloo|first6=H. Berna|last7=de Bont|first7=Eveline|last8=Chang|first8=Tai-Tsung|last9=Creutzig|first9=Ursula|date=2015|title=Heterogeneous cytogenetic subgroups and outcomes in childhood acute megakaryoblastic leukemia: a retrospective international study|url=https://www.ncbi.nlm.nih.gov/pubmed/26215111|journal=Blood|volume=126|issue=13|pages=1575–1584|doi=10.1182/blood-2015-02-629204|issn=1528-0020|pmc=4582334|pmid=26215111}}</ref><ref>{{Cite journal|last=de Rooij|first=Jasmijn D. E.|last2=Masetti|first2=Riccardo|last3=van den Heuvel-Eibrink|first3=Marry M.|last4=Cayuela|first4=Jean-Michel|last5=Trka|first5=Jan|last6=Reinhardt|first6=Dirk|last7=Rasche|first7=Mareike|last8=Sonneveld|first8=Edwin|last9=Alonzo|first9=Todd A.|date=2016|title=Recurrent abnormalities can be used for risk group stratification in pediatric AMKL: a retrospective intergroup study|url=https://www.ncbi.nlm.nih.gov/pubmed/27114462|journal=Blood|volume=127|issue=26|pages=3424–3430|doi=10.1182/blood-2016-01-695551|issn=1528-0020|pmc=5161011|pmid=27114462}}</ref>.  However, the majority of studies showed this to be a high-risk disease compared with pediatric AMKL without t(1;22).
Careful supportive care is likely required to prevent early death related to intensive chemotherapy<ref>{{Cite journal|last=Creutzig|first=Ursula|last2=Zimmermann|first2=Martin|last3=Reinhardt|first3=Dirk|last4=Dworzak|first4=Michael|last5=Stary|first5=Jan|last6=Lehrnbecher|first6=Thomas|date=2004|title=Early deaths and treatment-related mortality in children undergoing therapy for acute myeloid leukemia: analysis of the multicenter clinical trials AML-BFM 93 and AML-BFM 98|url=https://www.ncbi.nlm.nih.gov/pubmed/15514380|journal=Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology|volume=22|issue=21|pages=4384–4393|doi=10.1200/JCO.2004.01.191|issn=0732-183X|pmid=15514380}}</ref>, especially considering the very young age of patients with this AML subtype; differences in such care may cause the lack of prognostic consistency<ref name=":2" />.
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
Line 80: Line 72:
|D
|D
|Yes (WHO)
|Yes (WHO)
|The t(1;22) occurs in <1% of all AML cases and 10-1% of pediatric acute megakaryoblastic leukemia cases (REFERENCE). It is most frequent in infants (<6 months old) and young children (<3 years old) with Down syndrome and has a female predominance. Rarely it occurs in adults (REFERENCES).
|This AML subtype is classified based on the presence of a t(1;22)(p13.3;q13.1), which results in fusion of ''RBM15''(''OTT'') at 1p13.3 [hg38] and ''MKL1''(''MAL'') at 22q13.1 [hg38] with variable breakpoints<ref name=":1">{{Cite journal|last=Ma|first=Z.|last2=Morris|first2=S. W.|last3=Valentine|first3=V.|last4=Li|first4=M.|last5=Herbrick|first5=J. A.|last6=Cui|first6=X.|last7=Bouman|first7=D.|last8=Li|first8=Y.|last9=Mehta|first9=P. K.|date=2001|title=Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/11431691|journal=Nature Genetics|volume=28|issue=3|pages=220–221|doi=10.1038/90054|issn=1061-4036|pmid=11431691}}</ref><ref>{{Cite journal|last=Arber|first=Daniel A.|last2=Orazi|first2=Attilio|last3=Hasserjian|first3=Robert|last4=Thiele|first4=Jürgen|last5=Borowitz|first5=Michael J.|last6=Le Beau|first6=Michelle M.|last7=Bloomfield|first7=Clara D.|last8=Cazzola|first8=Mario|last9=Vardiman|first9=James W.|date=2016|title=The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/27069254|journal=Blood|volume=127|issue=20|pages=2391–2405|doi=10.1182/blood-2016-03-643544|issn=1528-0020|pmid=27069254}}</ref>.  Although both reciprocal fusions are expressed, the ''RBM15''-''MKL1'' fusion on the derivative chromosome 22 is the candidate oncoprotein because it contains all of the putative functional domains of both proteins<ref name=":1" />. Typically the ''RBM15''-''MKL1'' fusion presents as the sole abnormality<ref name=":0">Arber DA, et al., (2017). Acute myeloid leukaemia with recurrent genetic abnormalities, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. Revised 4th Edition. IARC Press: Lyon, France, p139-140.</ref>.The t(1;22) occurs in <1% of all AML cases and 10-1% of pediatric acute megakaryoblastic leukemia cases (REFERENCE). It is most frequent in infants (<6 months old) and young children (<3 years old) with Down syndrome and has a female predominance. Rarely it occurs in adults (REFERENCES). Translocation-confirmed cases with <20% blasts on aspirate smears should be correlated with the biopsy to exclude an artificially low count due to marrow fibrosis, and then if the blasts remain low, followed closely to monitor for development of more definitive evidence for AML (such as the occurrence of extramedullary disease or myeloid sarcoma)<ref name=":0" />. This translocation was originally associated with poor prognosis but some studies demonstrate good response to intensive chemotherapy with long disease-free survival<ref name=":0" />.  Two retrospective studies in 2015 and 2016 of non-Down syndrome pediatric AMKL patients found that the ''RBM15''-''MKL1'' fusion was present in 12% and 13.7% of cases, was associated with significantly younger onset, and was considered to have a relative risk classification of intermediate or standard<ref name=":2">{{Cite journal|last=Inaba|first=Hiroto|last2=Zhou|first2=Yinmei|last3=Abla|first3=Oussama|last4=Adachi|first4=Souichi|last5=Auvrignon|first5=Anne|last6=Beverloo|first6=H. Berna|last7=de Bont|first7=Eveline|last8=Chang|first8=Tai-Tsung|last9=Creutzig|first9=Ursula|date=2015|title=Heterogeneous cytogenetic subgroups and outcomes in childhood acute megakaryoblastic leukemia: a retrospective international study|url=https://www.ncbi.nlm.nih.gov/pubmed/26215111|journal=Blood|volume=126|issue=13|pages=1575–1584|doi=10.1182/blood-2015-02-629204|issn=1528-0020|pmc=4582334|pmid=26215111}}</ref><ref>{{Cite journal|last=de Rooij|first=Jasmijn D. E.|last2=Masetti|first2=Riccardo|last3=van den Heuvel-Eibrink|first3=Marry M.|last4=Cayuela|first4=Jean-Michel|last5=Trka|first5=Jan|last6=Reinhardt|first6=Dirk|last7=Rasche|first7=Mareike|last8=Sonneveld|first8=Edwin|last9=Alonzo|first9=Todd A.|date=2016|title=Recurrent abnormalities can be used for risk group stratification in pediatric AMKL: a retrospective intergroup study|url=https://www.ncbi.nlm.nih.gov/pubmed/27114462|journal=Blood|volume=127|issue=26|pages=3424–3430|doi=10.1182/blood-2016-01-695551|issn=1528-0020|pmc=5161011|pmid=27114462}}</ref>.  However, the majority of studies showed this to be a high-risk disease compared with pediatric AMKL without t(1;22). Careful supportive care is likely required to prevent early death related to intensive chemotherapy<ref>{{Cite journal|last=Creutzig|first=Ursula|last2=Zimmermann|first2=Martin|last3=Reinhardt|first3=Dirk|last4=Dworzak|first4=Michael|last5=Stary|first5=Jan|last6=Lehrnbecher|first6=Thomas|date=2004|title=Early deaths and treatment-related mortality in children undergoing therapy for acute myeloid leukemia: analysis of the multicenter clinical trials AML-BFM 93 and AML-BFM 98|url=https://www.ncbi.nlm.nih.gov/pubmed/15514380|journal=Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology|volume=22|issue=21|pages=4384–4393|doi=10.1200/JCO.2004.01.191|issn=0732-183X|pmid=15514380}}</ref>, especially considering the very young age of patients with this AML subtype; differences in such care may cause the lack of prognostic consistency<ref name=":2" />.
|}
|}
==Individual Region Genomic Gain/Loss/LOH==
==Individual Region Genomic Gain/Loss/LOH==
Not applicable
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene rearrangements. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Can refer to CGC workgroup tables as linked on the homepage if applicable. Please include references throughout the table. Do not delete the table.'') </span>
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
Line 93: Line 82:
!'''Clinical Relevance Details/Other Notes'''
!'''Clinical Relevance Details/Other Notes'''
|-
|-
|<span class="blue-text">EXAMPLE:</span>
|N/A
7
|<span class="blue-text">EXAMPLE:</span> Loss
|<span class="blue-text">EXAMPLE:</span>
chr7
|<span class="blue-text">EXAMPLE:</span>
Unknown
|<span class="blue-text">EXAMPLE:</span> D, P
|<span class="blue-text">EXAMPLE:</span> No
|<span class="blue-text">EXAMPLE:</span>
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add references).
|-
|<span class="blue-text">EXAMPLE:</span>
8
|<span class="blue-text">EXAMPLE:</span> Gain
|<span class="blue-text">EXAMPLE:</span>
chr8
|<span class="blue-text">EXAMPLE:</span>
Unknown
|<span class="blue-text">EXAMPLE:</span> D, P
|
|<span class="blue-text">EXAMPLE:</span>
Common recurrent secondary finding for t(8;21) (add references).
|-
|<span class="blue-text">EXAMPLE:</span>
17
|<span class="blue-text">EXAMPLE:</span> Amp
|<span class="blue-text">EXAMPLE:</span>
17q12; chr17:39,700,064-39,728,658 [hg38; 28.6 kb]
|<span class="blue-text">EXAMPLE:</span>
''ERBB2''
|<span class="blue-text">EXAMPLE:</span> D, P, T
|
|<span class="blue-text">EXAMPLE:</span>
Amplification of ''ERBB2'' is associated with HER2 overexpression in HER2 positive breast cancer (add references). Add criteria for how amplification is defined.
|-
|
|
|
|
|
Line 138: Line 91:
|}
|}
==Characteristic Chromosomal or Other Global Mutational Patterns==
==Characteristic Chromosomal or Other Global Mutational Patterns==
Not applicable
Put your text here and fill in the table <span style="color:#0070C0">(I''nstructions: Included in this category are alterations such as hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis; microsatellite instability; homologous recombination deficiency; mutational signature pattern; etc. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span>
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
Line 151: Line 101:
!'''Clinical Relevance Details/Other Notes'''
!'''Clinical Relevance Details/Other Notes'''
|-
|-
|<span class="blue-text">EXAMPLE:</span>
|N/A
Co-deletion of 1p and 18q
|<span class="blue-text">EXAMPLE:</span> See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).
|<span class="blue-text">EXAMPLE:</span> Common (Oligodendroglioma)
|<span class="blue-text">EXAMPLE:</span> D, P
|
|
|-
|<span class="blue-text">EXAMPLE:</span>
Microsatellite instability - hypermutated
|
|<span class="blue-text">EXAMPLE:</span> Common (Endometrial carcinoma)
|<span class="blue-text">EXAMPLE:</span> P, T
|
|
|-
|
|
|
|
|
Line 177: Line 111:


COSMIC does not have specific information on mutations related to this subtype of AML.
COSMIC does not have specific information on mutations related to this subtype of AML.
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent or common as well either disease defining and/or clinically significant. If a gene has multiple mechanisms depending on the type or site of the alteration, add multiple entries in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Details on clinical significance such as prognosis and other important information such as concomitant and mutually exclusive mutations can be provided in the notes section. Please include references throughout the table. Do not delete the table.'') </span>
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-
Line 186: Line 119:
!'''Clinical Relevance Details/Other Notes'''
!'''Clinical Relevance Details/Other Notes'''
|-
|-
|<span class="blue-text">EXAMPLE:</span>''EGFR''
|N/A
 
<br />
|<span class="blue-text">EXAMPLE:</span> Exon 18-21 activating mutations
|<span class="blue-text">EXAMPLE:</span> Oncogene
|<span class="blue-text">EXAMPLE:</span> Common (lung cancer)
|<span class="blue-text">EXAMPLE:</span> T
|<span class="blue-text">EXAMPLE:</span> Yes (NCCN)
|<span class="blue-text">EXAMPLE:</span> Exons 18, 19, and 21 mutations are targetable for therapy. Exon 20 T790M variants cause resistance to first generation TKI therapy and are targetable by second and third generation TKIs (add references).
|-
|<span class="blue-text">EXAMPLE:</span> ''TP53''; Variable LOF mutations
<br />
|<span class="blue-text">EXAMPLE:</span> Variable LOF mutations
|<span class="blue-text">EXAMPLE:</span> Tumor Supressor Gene
|<span class="blue-text">EXAMPLE:</span> Common (breast cancer)
|<span class="blue-text">EXAMPLE:</span> P
|
|<span class="blue-text">EXAMPLE:</span> >90% are somatic; rare germline alterations associated with Li-Fraumeni syndrome (add reference). Denotes a poor prognosis in breast cancer.
|-
|<span class="blue-text">EXAMPLE:</span> ''BRAF''; Activating mutations
|<span class="blue-text">EXAMPLE:</span> Activating mutations
|<span class="blue-text">EXAMPLE:</span> Oncogene
|<span class="blue-text">EXAMPLE:</span> Common (melanoma)
|<span class="blue-text">EXAMPLE:</span> T
|
|
|-
|
|
|
|
|

Revision as of 15:01, 10 May 2025


Haematolymphoid Tumours (WHO Classification, 5th ed.)

editContent Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification
This page was converted to the new template on 2023-12-07. The original page can be found at HAEM4:Acute Myeloid Leukemia (AML) Megakaryoblastic with t(1;22)(p13.3;q13.1);RBM15-MKL1.

(General Instructions – The focus of these pages is the clinically significant genetic alterations in each disease type. This is based on up-to-date knowledge from multiple resources such as PubMed and the WHO classification books. The CCGA is meant to be a supplemental resource to the WHO classification books; the CCGA captures in a continually updated wiki-stye manner the current genetics/genomics knowledge of each disease, which evolves more rapidly than books can be revised and published. If the same disease is described in multiple WHO classification books, the genetics-related information for that disease will be consolidated into a single main page that has this template (other pages would only contain a link to this main page). Use HUGO-approved gene names and symbols (italicized when appropriate), HGVS-based nomenclature for variants, as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column in a table, click nearby within the table and select the > symbol that appears. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see Author_Instructions and FAQs as well as contact your Associate Editor or Technical Support.)

Primary Author(s)*

Jennelle C. Hodge, PhD, FACMG

WHO Classification of Disease

Structure Disease
Book Haematolymphoid Tumours (5th ed.)
Category Myeloid proliferations and neoplasms
Family Acute myeloid leukaemia
Type Acute myeloid leukaemia with defining genetic abnormalities
Subtype(s) Acute myeloid leukaemia with RBM15::MRTFA fusion

WHO Essential and Desirable Genetic Diagnostic Criteria

WHO Essential Criteria (Genetics)* Detection of RBM15::MRTFA fusion by FISH and/or RT-PCR or a similar molecular technique
WHO Desirable Criteria (Genetics)* Detection of t(1;22)(p13.3;q13.1) by karyotype analyssi
Other Classification N/A

*Note: These are only the genetic/genomic criteria. Additional diagnostic criteria can be found in the WHO Classification of Tumours.

Related Terminology

(Instructions: The table will have the related terminology from the WHO autocompleted.)

Acceptable
Not Recommended

Gene Rearrangements

Driver Gene Fusion(s) and Common Partner Genes Molecular Pathogenesis Typical Chromosomal Alteration(s) Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease) Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
RBM15(OTT) / MKL1(MAL) The majority of both genes retained in the fusion 5’ DEK and 3’NUP214(CAN) with the pathogenic derivative being hte der(22). t(1;22)(p13.3;q13.1) Rare (AML) D Yes (WHO) This AML subtype is classified based on the presence of a t(1;22)(p13.3;q13.1), which results in fusion of RBM15(OTT) at 1p13.3 [hg38] and MKL1(MAL) at 22q13.1 [hg38] with variable breakpoints[1][2]. Although both reciprocal fusions are expressed, the RBM15-MKL1 fusion on the derivative chromosome 22 is the candidate oncoprotein because it contains all of the putative functional domains of both proteins[1]. Typically the RBM15-MKL1 fusion presents as the sole abnormality[3].The t(1;22) occurs in <1% of all AML cases and 10-1% of pediatric acute megakaryoblastic leukemia cases (REFERENCE). It is most frequent in infants (<6 months old) and young children (<3 years old) with Down syndrome and has a female predominance. Rarely it occurs in adults (REFERENCES). Translocation-confirmed cases with <20% blasts on aspirate smears should be correlated with the biopsy to exclude an artificially low count due to marrow fibrosis, and then if the blasts remain low, followed closely to monitor for development of more definitive evidence for AML (such as the occurrence of extramedullary disease or myeloid sarcoma)[3]. This translocation was originally associated with poor prognosis but some studies demonstrate good response to intensive chemotherapy with long disease-free survival[3]. Two retrospective studies in 2015 and 2016 of non-Down syndrome pediatric AMKL patients found that the RBM15-MKL1 fusion was present in 12% and 13.7% of cases, was associated with significantly younger onset, and was considered to have a relative risk classification of intermediate or standard[4][5]. However, the majority of studies showed this to be a high-risk disease compared with pediatric AMKL without t(1;22). Careful supportive care is likely required to prevent early death related to intensive chemotherapy[6], especially considering the very young age of patients with this AML subtype; differences in such care may cause the lack of prognostic consistency[4].

Individual Region Genomic Gain/Loss/LOH

Chr # Gain, Loss, Amp, LOH Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size] Relevant Gene(s) Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
N/A

Characteristic Chromosomal or Other Global Mutational Patterns

Chromosomal Pattern Molecular Pathogenesis Prevalence -

Common >20%, Recurrent 5-20% or Rare <5% (Disease)

Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
N/A

Gene Mutations (SNV/INDEL)

COSMIC does not have specific information on mutations related to this subtype of AML.

Gene Genetic Alteration Tumor Suppressor Gene, Oncogene, Other Prevalence -

Common >20%, Recurrent 5-20% or Rare <5% (Disease)

Diagnostic, Prognostic, and Therapeutic Significance - D, P, T   Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
N/A

Note: A more extensive list of mutations can be found in cBioportal, COSMIC, and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.

Epigenomic Alterations

Not applicable

Genes and Main Pathways Involved

The molecular mechanism is not completely understand, but the fusion protein may modulate chromatin organization, HOX-induced differentiation and extracellular signaling pathways[3][1]. Put your text here and fill in the table (Instructions: Please include references throughout the table. Do not delete the table.)

Gene; Genetic Alteration Pathway Pathophysiologic Outcome
EXAMPLE: BRAF and MAP2K1; Activating mutations EXAMPLE: MAPK signaling EXAMPLE: Increased cell growth and proliferation
EXAMPLE: CDKN2A; Inactivating mutations EXAMPLE: Cell cycle regulation EXAMPLE: Unregulated cell division
EXAMPLE: KMT2C and ARID1A; Inactivating mutations EXAMPLE: Histone modification, chromatin remodeling EXAMPLE: Abnormal gene expression program

Genetic Diagnostic Testing Methods

Karyotype, FISH, RT-PCR

Familial Forms

Not applicable

Additional Information

Not applicable

Links

RBM15

MKL1

References

(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted.)

  1. 1.0 1.1 1.2 Ma, Z.; et al. (2001). "Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia". Nature Genetics. 28 (3): 220–221. doi:10.1038/90054. ISSN 1061-4036. PMID 11431691.
  2. Arber, Daniel A.; et al. (2016). "The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia". Blood. 127 (20): 2391–2405. doi:10.1182/blood-2016-03-643544. ISSN 1528-0020. PMID 27069254.
  3. 3.0 3.1 3.2 3.3 Arber DA, et al., (2017). Acute myeloid leukaemia with recurrent genetic abnormalities, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. Revised 4th Edition. IARC Press: Lyon, France, p139-140.
  4. 4.0 4.1 Inaba, Hiroto; et al. (2015). "Heterogeneous cytogenetic subgroups and outcomes in childhood acute megakaryoblastic leukemia: a retrospective international study". Blood. 126 (13): 1575–1584. doi:10.1182/blood-2015-02-629204. ISSN 1528-0020. PMC 4582334. PMID 26215111.
  5. de Rooij, Jasmijn D. E.; et al. (2016). "Recurrent abnormalities can be used for risk group stratification in pediatric AMKL: a retrospective intergroup study". Blood. 127 (26): 3424–3430. doi:10.1182/blood-2016-01-695551. ISSN 1528-0020. PMC 5161011. PMID 27114462.
  6. Creutzig, Ursula; et al. (2004). "Early deaths and treatment-related mortality in children undergoing therapy for acute myeloid leukemia: analysis of the multicenter clinical trials AML-BFM 93 and AML-BFM 98". Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 22 (21): 4384–4393. doi:10.1200/JCO.2004.01.191. ISSN 0732-183X. PMID 15514380.


Notes

*Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the Associate Editor or other CCGA representative.  When pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author.

Prior Author(s):


*Citation of this Page: “Acute myeloid leukaemia with RBM15::MRTFA fusion”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 05/10/2025, https://ccga.io/index.php/HAEM5:Acute_myeloid_leukaemia_with_RBM15::MRTFA_fusion.