Astrocytoma, IDH-mutant

Revision as of 05:37, 4 September 2025 by Laveniya.Satgunaseelan (talk | contribs) (populated fields)


Central Nervous System Tumours (WHO Classification, 5th ed.)

Primary Author(s)*

Meenakshi Mehrotra, PhD, Mount Sinai Health System, New York

WHO Classification of Disease

Structure Disease
Book Central Nervous System Tumours (5th ed.)
Category Gliomas, glioneuronal tumours, and neuronal tumours
Family Gliomas, glioneuronal tumours, and neuronal tumours
Type Adult-type diffuse gliomas
Subtype(s) Astrocytoma, IDH-mutant

Related Terminology

Acceptable N/A
Not Recommended Diffuse astrocytoma, IDH-mutant; anaplastic astrocytoma, IDH-mutant; glioblastoma, IDH-mutant; low-grade astrocytoma; lower-grade astrocytoma; high-grade astrocytoma; infiltrating astrocytoma; diffuse glioma

Gene Rearrangements


Driver Gene Fusion(s) and Common Partner Genes Molecular Pathogenesis Typical Chromosomal Alteration(s) Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease) Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
MET PTPRZ1::MET N/A N/A Rare (~1%) P No MET fusions and splicing variants convergently define a subgroup of glioma sensitive to MET inhibitors[1][2]
NTRK2 GOLGA1::NTRK2 N/A N/A Rare (observed in single case report) P, T No Single case report[3]
NTRK2 CDK5RAP2::NTRK2 N/A N/A Rare (observed in single case report) P, T No Single case report[4]

Individual Region Genomic Gain/Loss/LOH

Put your text here and fill in the table (Instructions: Includes aberrations not involving gene rearrangements. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Can refer to CGC workgroup tables as linked on the homepage if applicable. Please include references throughout the table. Do not delete the table.)

Chr # Gain, Loss, Amp, LOH Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size] Relevant Gene(s) Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
9 loss chr9:21,967,752-21,995,324 CDKN2A P Yes  (WHO CNS5) Poorer prognosis[5]
9 loss chr9:22,002,903-22,009,313 CDKN2B P Yes  (WHO CNS5) Poorer prognosis[6]
12 amp chr12:57,747,727-57,756,013 CDK4 P,T No Poorer prognosis[7]
13 loss chr13:48,303,744-48,599,436 RB1 P No [8]
4 amp chr4:54,229,280-54,298,245 PDGFRA P No Poorer prognosis[9]
2 amp chr2:15,940,550-15,947,007 MYCN P No PMID: 29687258; PMID: 37185778; poorer prognosis
7 amp chr7:116,672,196-116,798,377 MET No PMID: 31667475
10 loss chr10:87863113-87971930 PTEN P No PMID: 37185778

Characteristic Chromosomal or Other Global Mutational Patterns

Put your text here and fill in the table (Instructions: Included in this category are alterations such as hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis; microsatellite instability; homologous recombination deficiency; mutational signature pattern; etc. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.)

Chromosomal Pattern Molecular Pathogenesis Prevalence -

Common >20%, Recurrent 5-20% or Rare <5% (Disease)

Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE:

Co-deletion of 1p and 18q

EXAMPLE: See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). EXAMPLE: Common (Oligodendroglioma) EXAMPLE: D, P
EXAMPLE:

Microsatellite instability - hypermutated

EXAMPLE: Common (Endometrial carcinoma) EXAMPLE: P, T

Gene Mutations (SNV/INDEL)

Put your text here and fill in the table (Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent or common as well either disease defining and/or clinically significant. If a gene has multiple mechanisms depending on the type or site of the alteration, add multiple entries in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Details on clinical significance such as prognosis and other important information such as concomitant and mutually exclusive mutations can be provided in the notes section. Please include references throughout the table. Do not delete the table.)

Gene Genetic Alteration Tumor Suppressor Gene, Oncogene, Other Prevalence -

Common >20%, Recurrent 5-20% or Rare <5% (Disease)

Diagnostic, Prognostic, and Therapeutic Significance - D, P, T   Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE:EGFR


EXAMPLE: Exon 18-21 activating mutations EXAMPLE: Oncogene EXAMPLE: Common (lung cancer) EXAMPLE: T EXAMPLE: Yes (NCCN) EXAMPLE: Exons 18, 19, and 21 mutations are targetable for therapy. Exon 20 T790M variants cause resistance to first generation TKI therapy and are targetable by second and third generation TKIs (add references).
EXAMPLE: TP53; Variable LOF mutations


EXAMPLE: Variable LOF mutations EXAMPLE: Tumor Supressor Gene EXAMPLE: Common (breast cancer) EXAMPLE: P EXAMPLE: >90% are somatic; rare germline alterations associated with Li-Fraumeni syndrome (add reference). Denotes a poor prognosis in breast cancer.
EXAMPLE: BRAF; Activating mutations EXAMPLE: Activating mutations EXAMPLE: Oncogene EXAMPLE: Common (melanoma) EXAMPLE: T

Note: A more extensive list of mutations can be found in cBioportal, COSMIC, and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.

Epigenomic Alterations

Put your text here

Genes and Main Pathways Involved

Put your text here and fill in the table (Instructions: Please include references throughout the table. Do not delete the table.)

Gene; Genetic Alteration Pathway Pathophysiologic Outcome
EXAMPLE: BRAF and MAP2K1; Activating mutations EXAMPLE: MAPK signaling EXAMPLE: Increased cell growth and proliferation
EXAMPLE: CDKN2A; Inactivating mutations EXAMPLE: Cell cycle regulation EXAMPLE: Unregulated cell division
EXAMPLE: KMT2C and ARID1A; Inactivating mutations EXAMPLE: Histone modification, chromatin remodeling EXAMPLE: Abnormal gene expression program

Genetic Diagnostic Testing Methods

Put your text here (Instructions: Include recommended testing type(s) to identify the clinically significant genetic alterations.)

Familial Forms

Put your text here (Instructions: Include associated hereditary conditions/syndromes that cause this entity or are caused by this entity.)

Additional Information

Put your text here

Links

Put a link here or anywhere appropriate in this page (Instructions: Highlight the text to which you want to add a link in this section or elsewhere, select the "Link" icon at the top of the wiki page, and search the name of the internal page to which you want to link this text, or enter an external internet address by including the "http://www." portion.)

References

(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted.)

Notes

*Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the Associate Editor or other CCGA representative.  When pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author.

Prior Author(s): *Citation of this Page: “Astrocytoma, IDH-mutant”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 09/4/2025, https://ccga.io/index.php/CNS5:Astrocytoma, IDH-mutant.

  1. Liu, Lingyu; et al. (2024-05). "MET fusions and splicing variants is a strong adverse prognostic factor in astrocytoma, isocitrate dehydrogenase mutant". Brain Pathology (Zurich, Switzerland). 34 (3): e13198. doi:10.1111/bpa.13198. ISSN 1750-3639. PMC 11007006 Check |pmc= value (help). PMID 37530224 Check |pmid= value (help). Check date values in: |date= (help)
  2. Wong, Queenie Hoi-Wing; et al. (2021-07). "Molecular landscape of IDH-mutant primary astrocytoma Grade IV/glioblastomas". Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc. 34 (7): 1245–1260. doi:10.1038/s41379-021-00778-x. ISSN 1530-0285. PMID 33692446 Check |pmid= value (help). Check date values in: |date= (help)
  3. Kirishima, Mari; et al. (2022-11). "IDH-mutant astrocytoma with an evolutional progression to CDKN2A/B homozygous deletion and NTRK fusion during recurrence: A case report". Pathology, Research and Practice. 239: 154163. doi:10.1016/j.prp.2022.154163. ISSN 1618-0631. PMID 36265224 Check |pmid= value (help). Check date values in: |date= (help)
  4. Kirishima, Mari; et al. (2022-11). "IDH-mutant astrocytoma with an evolutional progression to CDKN2A/B homozygous deletion and NTRK fusion during recurrence: A case report". Pathology, Research and Practice. 239: 154163. doi:10.1016/j.prp.2022.154163. ISSN 1618-0631. PMID 36265224 Check |pmid= value (help). Check date values in: |date= (help)
  5. Yang, Rui Ryan; et al. (2020-05). "IDH mutant lower grade (WHO Grades II/III) astrocytomas can be stratified for risk by CDKN2A, CDK4 and PDGFRA copy number alterations". Brain Pathology (Zurich, Switzerland). 30 (3): 541–553. doi:10.1111/bpa.12801. ISSN 1750-3639. PMC 8018138 Check |pmc= value (help). PMID 31733156. Check date values in: |date= (help)
  6. Lee, Kwanghoon; et al. (2023-04-25). "Genomic profiles of IDH-mutant gliomas: MYCN-amplified IDH-mutant astrocytoma had the worst prognosis". Scientific Reports. 13 (1): 6761. doi:10.1038/s41598-023-32153-y. ISSN 2045-2322. PMC 10130138 Check |pmc= value (help). PMID 37185778 Check |pmid= value (help).
  7. Yang, Rui Ryan; et al. (2020-05). "IDH mutant lower grade (WHO Grades II/III) astrocytomas can be stratified for risk by CDKN2A, CDK4 and PDGFRA copy number alterations". Brain Pathology (Zurich, Switzerland). 30 (3): 541–553. doi:10.1111/bpa.12801. ISSN 1750-3639. PMC 8018138 Check |pmc= value (help). PMID 31733156. Check date values in: |date= (help)
  8. Shirahata, Mitsuaki; et al. (2018-07). "Novel, improved grading system(s) for IDH-mutant astrocytic gliomas". Acta Neuropathologica. 136 (1): 153–166. doi:10.1007/s00401-018-1849-4. ISSN 1432-0533. PMID 29687258. Check date values in: |date= (help)
  9. Yang, Rui Ryan; et al. (2020-05). "IDH mutant lower grade (WHO Grades II/III) astrocytomas can be stratified for risk by CDKN2A, CDK4 and PDGFRA copy number alterations". Brain Pathology (Zurich, Switzerland). 30 (3): 541–553. doi:10.1111/bpa.12801. ISSN 1750-3639. PMC 8018138 Check |pmc= value (help). PMID 31733156. Check date values in: |date= (help)